采用沉淀聚合法制备了低分子量苯乙烯-马来酸酐交替共聚物(SMA),并用正丁醇对其进行双酯化改性,探讨了带水剂用量、催化剂用量、酸醇物质的量比、反应温度及反应时间对SMA双酯化反应的影响。结果表明,温度为150℃,以二甲苯作为带水剂(质量分数40%)、对甲苯磺酸(p-TSA)为催化剂,通过调节催化剂用量和酸醇物质的量之比,反应5h,可制备出酯化度达72%的SMA酯化物(SME)。对SME进行热失重分析(TGA)的测试结果显示,其失重温度较SMA提前,耐热性降低。然后,将SME作为增塑剂应用于PVC螺杆挤出加工实验中,考察了不同用量SME对PVC增塑样条的力学性能及耐抽出性性能的影响并与DOP增塑剂进行了对比,结果表明SME有效改善了PVC制品的脆性,增加了其抗冲击强度,并且在化学溶剂和高温环境中均表现出良好的耐抽出性能。
以双环戊二烯为芯材,脲醛树脂为壁材,采用原位聚合法制备了脲醛树脂微胶囊。通过扫描电子显微镜(SEM)、热失重分析(TGA)、光学显微镜(OM)和傅里叶变换红外光谱(FT-IR)等对微胶囊进行了测试和表征。结果表明,所制备的微胶囊平均粒径为150μm,脲醛树脂囊壁的厚度为10μm,微胶囊分解温度为150℃,囊芯质量分数可达65%左右,且囊壁有良好的密封性。
利用拉曼光谱对不同取向度的聚丙烯腈(PAN)基碳纤维进行截面和表面区域石墨结构表征,通过对测试机理的分析以及取向与模量相关性的研究,建立了采用拉曼光谱表征纤维皮部石墨结构取向的方法。研究发现,拉曼表征的纤维皮部石墨结构取向因子g*与X射线衍射表征的纤维整体石墨结构取向度π变化趋势相同,说明拉曼光谱表征结构取向的方法是有效的;与π相比,g*和纤维拉伸模量存在更好的线性关系,表明皮部石墨结构取向对纤维整体模量的贡献更大、更直接。
采用原子转移自由基聚合(ATRP)制备了一系列ABA型液晶三嵌段共聚物P11CBMAm-b-PDMSn-b-P11CBMAm,并研究其微观形态和介电性能。首先分别合成液晶前驱体11CBMA和大分子引发剂Br-PDMS-Br,然后以甲苯为溶剂、CuBr/HMTETA为催化剂,由Br-PDMS-Br引发11CBMA进行ATRP聚合。通过控制投料比,制备出一系列具有相同长度PDMS段(n=356)和不同长度液晶P11CBMA段(m=49,79,115)的样品。通过1H-NMR、GPC和DSC对样品进行表征,并利用热退火的方法促进其微观结构的形成。TEM结果显示,样品在经过退火后PDMS段聚集成球状结构;随着液晶段含量的增加,PDMS球状相的尺寸逐渐减少。嵌段共聚物的微观形态对材料的介电性能有很大的影响。退火后样品的介电常数明显高于均聚物PDMS和P11CBMA,这说明控制材料的微结构是提高材料介电常数的有效途径。