ABA型液晶三嵌段共聚物的合成、微结构及介电性能研究

张翠红;王东瑞;胡国华;党智敏*

北京化工大学学报(自然科学版) ›› 2014, Vol. 41 ›› Issue (4) : 76-82.

PDF(2416 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月26日 星期六
Email Alert  RSS
PDF(2416 KB)
北京化工大学学报(自然科学版) ›› 2014, Vol. 41 ›› Issue (4) : 76-82.
材料科学与工程

ABA型液晶三嵌段共聚物的合成、微结构及介电性能研究

  • 张翠红;王东瑞;胡国华;党智敏*
作者信息 +

Synthesis, microphase morphology and dielectric properties of ABA type liquid crystalline triblock copolymers

  • ZHANG CuiHong;WANG DongRui;HU GuoHua;DANG ZhiMin
Author information +
文章历史 +

摘要

采用原子转移自由基聚合(ATRP)制备了一系列ABA型液晶三嵌段共聚物P11CBMAm-b-PDMSn-b-P11CBMAm,并研究其微观形态和介电性能。首先分别合成液晶前驱体11CBMA和大分子引发剂Br-PDMS-Br,然后以甲苯为溶剂、CuBr/HMTETA为催化剂,由Br-PDMS-Br引发11CBMA进行ATRP聚合。通过控制投料比,制备出一系列具有相同长度PDMS段(n=356)和不同长度液晶P11CBMA段(m=49,79,115)的样品。通过1H-NMR、GPC和DSC对样品进行表征,并利用热退火的方法促进其微观结构的形成。TEM结果显示,样品在经过退火后PDMS段聚集成球状结构;随着液晶段含量的增加,PDMS球状相的尺寸逐渐减少。嵌段共聚物的微观形态对材料的介电性能有很大的影响。退火后样品的介电常数明显高于均聚物PDMS和P11CBMA,这说明控制材料的微结构是提高材料介电常数的有效途径。

Abstract

A series of ABA type liquid crystalline (LC) triblock copolymers P11CBMAm-b-PDMSn-b-P11CBMAm(P11CBMA = poly[11-(4-cyano-4'-biphenoxy)undecyl methacrylate];PDMS=poly(dimethylsiloxane)) has been synthesized by atom transfer radical polymerization (ATRP). Firstly,the monomer 11CBMA and the macroinitiator Br-PDMS-Br were prepared. Then, by using Br-PDMS-Br,toluene, CuBr, and hexamethyltriethylenetetramine (HMTETA) as the macroinitiator, solvent,catalyst and ligand, respectively, P11CBMAm-b-PDMSn-b-P11CBMAm was synthesized through ATRP of 11CBMA. Three samples with the same PDMS block length (n=356) and different P11CBMA block lengths (m=49, 79, 115) were synthesized by controlling the molar feed ratio of the LC monomer to the difunctional macroinitiators. The characterization of the triblock copolymers was performed with 1H-NMR, GPC and DSC. Their microphase separation behavior and dielectric properties were carefully investigated. After thermal annealing, the particles adopt a spherical morphology. As the length of the 11CBMA block increases, the morphology of the PDMS phase becomes smaller. The dielectric properties of the block copolymers were strongly influenced by the microphaseseparated morphologies. After thermal annealing, the triblock copolymers show higher dielectric constants than homopolymers of PDMS and P11CBMA. These results show that the self-assembly method is an effective approach to improve the dielectric permittivity of materials. 

引用本文

导出引用
张翠红;王东瑞;胡国华;党智敏*. ABA型液晶三嵌段共聚物的合成、微结构及介电性能研究[J]. 北京化工大学学报(自然科学版), 2014, 41(4): 76-82
ZHANG CuiHong;WANG DongRui;HU GuoHua;DANG ZhiMin. Synthesis, microphase morphology and dielectric properties of ABA type liquid crystalline triblock copolymers[J]. Journal of Beijing University of Chemical Technology, 2014, 41(4): 76-82

参考文献

[1] Yu H, Kobayashi T, Yang H. Liquid-crystalline ordering helps block copolymer self-assembly [J]. Advanced Materials, 2011, 23(29): 3337-3344.
[2] Shi L Y, Zhou Y, Fan X H, et al. Remarkably rich variety of nanostructures and order-order transitions in a rod-coil diblock copolymer [J]. Macromolecules, 2013, 46(13): 5308-5316.
[3] Wu B, Mu B, Wang S, et al. Triphenylene-based side chain liquid crystalline block copolymers containing a PEG block: controlled synthesis, microphase structures evolution and their interplay with discotic mesogenic orders [J]. Macromolecules, 2013, 46(8): 2916-2929.
[4] Majewski P W, Gopinadhan M, Jang W S, et al. Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment [J]. Journal of the American Chemical Society, 2010, 132(49): 17516-17522.
[5] Carpi F, Bauer S, Rossi D D. Stretching dielectric elastomer performance [J]. Science, 2010, 330(6012): 1759-1761.
[6] Dang Z M, Zhou T, Yao S H, et al. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity [J]. Advanced Materials, 2009, 21(20): 2077-2082.
[7] Yao S H, Yuan J K, Dang Z M, et al. High dielectric performance of three-component nanocomposites induced by a synergetic effect [J]. Materials Letters, 2010, 64(24): 2682-2684.
[8] Kussmaul B, Risse S, Kofod G, et al. Enhancement of dielectric permittivity and electromechanical response in silicone elastomers: molecular grafting of organic dipoles to the macromolecular network [J]. Advanced Functional Materials, 2011, 21(23): 4589-4594.
[9] Zhang C, Wang D, He J, et al. Synthesis, nanostructures and dielectric properties of novel liquid crystalline block copolymers [J]. Polymer Chemistry, 2014, 5: 2513-2520.
[10] Li Y, Urbas A, Li Q. Synthesis and characterization of light-driven dithienylcyclopentene switches with axial chirality [J]. The Journal of Organic Chemistry, 2011, 76(17): 7148-7156.
[11] Shi L Y, Shen Z, Fan X H. Order-order transition in a rod-coil diblock copolymer induced by supercritical CO2 [J]. Macromolecules, 2011, 44(8): 2900-2907.
[12] Asaoka S, Uekusa T, Tokimori H, et al. Normally oriented cylindrical nanostructures in amphiphilic PEO-LC diblock copolymers films [J]. Macromolecules, 2011, 44(19): 7645-7658.

[13] He X, Gao C, Sun W, et al. Synthesis and photoresponsive behavior of azobenzene-containing side-chain liquid crystalline diblock polymers with polypeptide block[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(5): 1040-1050. 
[14] Sun Y, Liu W. Synthesis and properties of triblock copolymers containing PDMS via AGET ATRP[J]. Polymer
Bulletin, 2012, 68(7): 1815-1829. 
[15] Wang D, Liu J, Ye G, et al. Amphiphilic block copolymers bearing strong push-pull azo chromophores: synthesis, micelle formation and photoinduced shape deformation[J]. Polymer, 2009, 50(2): 418-427.
[16] He X, Zhang H, Yan D, et al. Synthesis of side-chain liquid-crystalline homopolymers and triblock
copolymers with p-methoxyazobenzene moieties and poly(ethylene glycol) as coil segments by atom transfer radical polymerization and their thermotropic phase behavior[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(18): 2854-2864.
[17] Yu H, Shishido A, Iyoda T, et al. Novel wormlike nanostructures self-Assembled in a well defined
liquid crystalline diblock copolymer with azobenzene moieties[J]. Macromolecular Rapid Communications, 2007, 28(8): 927-931.
[18] Yu H, Kobayashi T. Fabrication of stable nonocylinder arrays in highly birefringent films of an
amphiphilic liquid-crystalline diblock copolymer [J]. ACS Applied Materials & Interfaces, 2009, 1(12): 2755-2762. 
[19] Gao L, Pan Q, Chen X, et al. Double-hexagonal morphology formed by rod-rich triblock copolymer[J]. Macromolecules, 2007, 40(26): 9205-9207.[20] MacdonaldJ R, Ahmad M M. Slopes, nearly constant loss, universality, and hopping rates for dispersive
ionic conduction[J]. Journal of Physics: Condensed Matter, 2007, 19(4): 046215 (13pp).
[21] Yoon D H, Zhang J, Lee B I. Dielectric constant and mixing model of BaTiO3 composite thick films [J
]. Materials Research Bulletin, 2003, 38(5): 765-772.
[22] Dang Z M, Lin Y Q, Xu H P, et al. Fabrication and dielectric characterization of advanced
BaTiO3/polyimide nanocomposite films with high thermal stability[J]. Advanced Functional Materials, 2008, 18(10): 1509-1517. 
[23] Zhukov S, Stühn B, Geppert S, et al. Nematic and domain order parameters for partially oriented
isotropic/liquid crystalline diblock copolymers: a dielectric spectroscopy study[J]. Macromolecules, 2006, 39(25): 8854-8861.

PDF(2416 KB)

1803

Accesses

0

Citation

Detail

段落导航
相关文章

/