蒸汽再压缩热泵(VRHP)可以提升隔离壁蒸馏塔(DWDC)的稳态性能,但也加剧了被控变量间的相互耦合,给蒸汽再压缩隔离壁蒸馏塔(VRHP-DWDC)的平稳操作带来困难。针对分离中间组分(甲苯)绝对占优的苯/甲苯/二甲苯三元物系的VRHP-DWDC,通过非方相对增益矩阵对操纵与被控变量进行配对,并依据闭环响应分析给出了一种新颖的单温度分散控制系统。由于采用塔顶/侧线热泵压缩机分别控制侧线段/公共提馏段的灵敏板温度,不但加快了侧线产品的响应速度,而且降低了塔底产品的峰值偏差。鉴于高度内部耦合以及失真的温度与组分对应关系导致二者存在较大的稳态偏差,采用双温差结构进一步强化系统设计,由此给出了一种非对称温度控制系统,降低了系统内在非线性因素的影响,因而能够减小侧线和塔底产品的稳态偏差。闭环仿真结果显示了该非对称温度控制系统的优越性。研究表明,VRHP的引入虽然加重了VRHP-DWDC的内部耦合,但也提供了压缩机功率这一潜在操作变量,其较好的控制通道特性与双温差结构的有效应用能在一定程度上改善VRHP-DWDC的闭环操作。
为了揭示射流管插入深度对螺旋通道传热性能的影响规律,采用数值模拟方法对不同相对插入深度(δ=0~0.625)下通道内流场特性和强化换热特性进行了分析。结果表明:随着δ的增大,射流核心区到达外壁面的距离变短,在射流入射位置处射流管两侧的二次涡范围扩大,流体对上下壁面的冲击作用增强;上、下传热壁面的局部努赛尔数Nuc随着δ的变化规律基本相同,最佳传热位置(Nuc最大的位置)随着δ的增大向外壁面靠拢;内壁面的Nuc在射流管壁内侧范围随着δ的增大而减小,在外侧范围随着δ的增大而增大;射流管插入深度增加对螺旋通道外壁面传热性能提高的效果最为明显;截面努赛尔数Nuθ随着螺旋角度γ的增大呈现3个变化区域,即入口区域、射流影响区域和出口区域,其中入口区域和出口区域的Nuθ随着γ的变化保持稳定,但出口区域的Nuθ比入口区域高19%左右,Nuθ最大值位于射流入射点下游5°左右的位置;在螺旋角度γ=-15°~45°的范围内射流对传热的影响最大,传热的影响范围基本与射流管的插入深度无关;综合换热评价指标(PEC)随着δ的增加呈现先增大后减小的变化规律,δ=0.250是螺旋通道最佳的综合传热性能结构参数。
为了探明麻疯树生物柴油(JME)燃料的蒸发过程,通过碱性酯交换反应制备了JME,并采用热电偶挂滴技术研究了在673 K和873 K的环境温度下JME单液滴的膨化和蒸发特性,分析了环境温度对JME液滴蒸发过程的影响。结果表明,JME液滴的蒸发过程分为瞬时加热阶段、波动蒸发阶段和平衡蒸发阶段;在673 K和873 K下JME液滴的蒸发特性不同,673 K下液滴的蒸发只存在膨胀过程,没有发生微爆,液滴寿命较长,而873 K下液滴出现了微爆现象,液滴寿命较短;环境温度的升高可以提高JME液滴的蒸发速率,这是因为JME中挥发性成分较多,其挥发后形成气泡,在高温下液滴发生膨化和微爆,这样可以更好地实现空气-燃料混合,提高柴油机的燃烧效率。
为了研究黄釉和绿釉琉璃瓦腐蚀行为的差异并探究其腐蚀过程,采用不同pH的模拟酸雨溶液分别对黄釉和绿釉琉璃瓦进行了腐蚀实验,对腐蚀后黄釉和绿釉琉璃瓦釉面的形貌、色差值、光泽度和粗糙度进行了测试和表征,并对腐蚀产物的成分、微观形貌、腐蚀溶液中Pb及着色元素的含量进行了测定。结果表明:绿釉比黄釉更容易受到腐蚀,原因是绿釉中Cu与Pb的协同作用促进了酸性条件下Cu和Pb的浸出;绿釉琉璃瓦经腐蚀后釉面的色差值升高、光泽度降低、粗糙度升高,并且其变化程度明显高于黄釉琉璃瓦;在pH=1的腐蚀溶液中黄釉表面的裂缝处生成了不规则柱型硫酸铅,但整体上腐蚀现象不明显,绿釉表面生成了疏松的层片状、颗粒状及规则多面体型硫酸铅并且覆盖在釉层表面及裂纹处;在pH=3的腐蚀溶液中,黄釉表面未发现明显的腐蚀现象,绿釉表面生成黏附性较强的层片状、颗粒状腐蚀产物层;绿釉腐蚀后存在外层的腐蚀产物覆盖层、Pb和Cu元素流失后形成的褪色富硅层及未腐蚀的釉层。
在环氧化杜仲胶(EEUG)中引入FeCl3,制备了基于Fe3+-O金属配位键的EEUG复合材料,研究了Fe3+-O配位键对EEUG硫化性能、结晶性能、力学性能及阻尼性能的影响。结果表明:Fe3+与环氧基团发生了络合反应,这种相互作用会随温度的升高逐渐减弱;配位键的存在会抑制EEUG β晶型的形成,使复合材料结晶能力下降;配位键对杜仲胶硫化过程的影响主要体现在硫化诱导期,配位键数量越多焦烧时间越短;配位键通过充当“动态牺牲键”大幅提高了复合材料的力学强度,添加3份氯化铁后,EEUG-29.8%复合材料的拉伸强度由2 MPa提升至7 MPa;此外,Fe3+与环氧基团之间的配位交联作用通过限制EEUG分子链运动实现了对复合材料阻尼性能的调控,相较于EEUG-29.8%复合材料,添加3份FeCl3后的复合材料阻尼峰位置由-25 ℃移动至0 ℃,有效阻尼温域由-40 ℃~-16 ℃升至-23 ℃~19 ℃,显著提高了EEUG复合材料常温下的阻尼性能。
采用连续浸胶法,使用自制的压辊式浸胶槽制备了短切石英纤维/酚醛树脂预混料,通过红外光谱法(F T- IR)、热重分析法(TG)和差示扫描量热法(DSC)对预混料进行了表征,并研究了其固化反应动力学。结果表明,溶剂乙醇影响石英纤维的浸胶过程,连续法制备的石英纤维/酚醛树脂预混料能够降低乙醇的影响;预混料的固化工艺参数为:凝胶温度108.40 ℃,固化温度183.04 ℃,后处理温度264.47 ℃;固化反应级数为0.95,固化反应动力学模型为:dα/dt=Aexp(-ΔE/RT)(1-α)n=4.3×1012exp(-140.74/RT)(1-α)0.95。使用模压法对所制备的预混料进行压制,得到石英纤维/酚醛树脂复合材料的模压制品,该模压制品在800 ℃下的质量残留率为82.3%,拉伸强度为58 MPa,断裂伸长率为0.353%,剪切强度为105 MPa,线烧蚀率为0.088 mm/s,烧蚀表面形貌未见异常,结果表明采用连续法制备的石英纤维/酚醛树脂预混料的模压制品具有较好的耐热性、烧蚀性和力学性能。
以生物降解塑料聚对苯二甲酸己二酸丁二醇酯(PBAT)为聚合物基体,硅灰石(WT)作为填料,以2, 3-甲基丙烯酸环氧丙酯(ADR)作为相容剂,通过熔融挤出制备得到PBAT/硅灰石复合材料,考察了相容剂ADR对PBAT/硅灰石复合材料结构及性能的影响。研究结果表明,相容剂可改善硅灰石在PBAT基体中的分散性,增强界面相互作用,提高复合材料的力学性能和热稳定性。
采用摩擦学性能测试与EDEM仿真模拟相结合的方法,研究了跨黏度纤维素在不同转速和不同载荷下的摩擦学行为,以及在摩擦过程中对螺杆表面的磨损机制。跨黏度纤维素的摩擦学性能测试采用“球- 盘”式摩擦磨损试验机,而对螺杆的磨损机制采用Archard Wear磨粒磨损计算公式及离散元方法构建纤维素及螺杆磨损机制模型。研究结果表明,在高转速60 r/min条件下,跨黏度纤维素的磨损规律受施加载荷大小的影响较大,15 mPa·s的摩擦系数在0.19至0.44之间,100 000 mPa·s的摩擦系数在0.25至0.52之间;在低转速10 r/min条件下,摩擦系数受法向载荷影响波动较大,15 mPa·s的摩擦系数在0.25至0.44之间,100 000 mPa·s的摩擦系数在0.24至0.58之间。通过EDEM仿真模拟发现,随着纤维素黏度增大,纤维素与螺杆表面的接触面积随之减少,螺棱在对纤维素推动的过程中,不易造成纤维素在螺槽中的相对滑动,进而减少螺槽部位的磨损。纤维素的黏度大小对润滑效果有一定影响,但并不是决定性因素;影响纤维素的润滑效果和磨损机理的主要是加载载荷,其中磨损程度随着载荷变大而加深,而磨损机理以磨粒磨损为主。同时,纤维素黏度会对螺杆的磨损位置和磨损程度产生影响。
采用溶剂热法合成了分散性良好的Fe3O4粒子,然后将油酸修饰到Fe3O4粒子表面,再通过疏水作用进行十六烷基三甲基氯化铵(CTAC)包覆,得到Fe3O4@CTAC粒子。采用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)、Zeta电位和振动样品磁强计(VSM)对Fe3O4@CTAC粒子进行了表征,结果表明:Fe3O4粒子表面包覆CTAC后粒径无明显变化,并且仍保持良好的单分散性;Fe3O4@CTAC粒子具有超顺磁性和良好的磁响应性能;Fe3O4@CTAC粒子的Zeta电位较高,分散体系具有较好的稳定性。对Fe3O4@CTAC粒子进行了抗菌性能及磁分离去除菌体测试,结果显示:当Fe3O4@CTAC粒子的含量为50 mg/mL时,与大肠杆菌(E. coli)(105 cfu/mL)作用10 min,抗菌率可达100%;Fe3O4@CTAC粒子对E. coli、金黄色葡萄球菌(S. aureus)及枯草芽孢杆菌(B. subtilis)均具有良好的抗菌效果;通过磁场分离可以将Fe3O4@CTAC粒子及吸附的菌体去除。以上结果表明Fe3O4@CTAC粒子是一种快速、高效、可以实现无菌体残留的抗菌剂,具有潜在的应用价值。
人体腰骶椎是承受载荷较大的部位,也是进行生物力学仿真研究的主要部位。为了提升腰骶椎部分建模的效率与灵活性,提出参数化腰骶有限元模型的建立方法。在CT图像中测取椎体的特征尺寸,并在工程建模软件中构建具有14个控制参数的L3-S1腰骶模型;同时通过三维重建法建立基于同一CT样本的腰骶重建模型。对两种模型施加相同的载荷并进行有限元分析,将仿真结果与文献报道的体外实验数据进行对比,验证了模型的有效性。基于有限元分析结果,比较了参数化模型和重建模型的椎间活动度、髓核最大应力等力学指标,结果表明,两种模型的力学指标均与文献中的实验或仿真数据接近,变化趋势与文献数据相似,即两种模型都是有效的;两种模型的椎间活动度、最大髓核内应力以及活动度随载荷大小的变化趋势等方面基本一致。以上结果说明所设计的参数化腰骶有限元模型能有效提升腰骶有限元建模与分析效率,在有限元分析中可替代重建模型。
针对复杂动态负荷游程波形模态及引起电能表误差的典型特征认识不足的问题,首先提出动态电流信号幅度域游程波形模态提取算法,提取了多种幅度域毫秒级小颗粒度游程波形模态;其次,提出LK-Shape游程波形模态聚类算法,提取了动态电流信号幅度域的6类典型游程波形模态及其快速变化特征;最后,提出导致电能表超差的两种敏感游程波形模态,并通过实验验证了该游程波形模态适于测试电能表误差,表明了所提方法的有效性和实用性。
旋风分离器是气田开发中常用的气固分离设备,准确预测旋风分离器的分离效率对于指导其结构设计和方法优化具有重要意义。在对数据集进行相关性分析的基础上,采用因子分析(factor analysis,FA)简化变量,降低预测模型的复杂程度,利用改进的樽海鞘群算法(improved salp swarm algorithm,ISSA)对投影寻踪(projection pursuit regression,PPR)的模型参数进行优化,形成FA-ISSA-PPR组合模型。结果表明,利用FA模型,原数据集的10个变量可以简化合并为4个公因子,分别代表尺寸参数、颗粒沉降特性、粒子运行轨迹和等效分割粒径对分离效率的影响;与半经验模型和其余机器学习模型相比,组合模型在预测精度和训练时间上具有一定的优越性,在测试样本上的平均绝对误差(MAE)为0.005 91,R2可达0.995,证明了其在小样本、非线性数据分析上的准确性、鲁棒性和泛化性。
在天然气输送系统中,当考虑弯管焊接缺陷时,结构特征差异导致的流场变化会使弯管产生不同的冲蚀特性。采用Computational Fluid Dynamics-Discrete Phase Model(CFD-DPM)方法研究不同颗粒参数、弯管导向、缺陷高度及颗粒入射角度下无错边焊缝弯管、外错边焊缝弯管、内错边焊缝弯管的介质流态特征与冲蚀规律。研究结果表明:(1)气体在弯管部位出现二次流动现象,速度分布出现扭曲,其中外错边焊缝弯管速度分布曲线扭曲幅度大,二次流作用效应最明显;(2)流体速度对冲蚀速率的影响最大,两者呈幂指数函数关系,质量流量次之,与冲蚀速率呈线性函数关系,颗粒粒径的影响最小,与冲蚀速率近似呈线性函数关系;(3)外错边焊缝弯管会在弯头处形成第二冲蚀磨损严重区域,而内错边焊缝与无错边焊缝弯管冲蚀效果相似,均只有1个冲蚀严重区域;(4)当流体在竖直管流向一致时,“H-V”导向弯管最大冲蚀速率均大于“V-H”导向弯管,在不同弯管导向下外错边焊缝弯管冲蚀速率最大;(5)弯管最外侧最大磨损位置随着错边高度发生变化,在一定高度下会使弯头内壁形成第二冲蚀磨损严重区域,且错边高度越大,弯头最外侧所受冲蚀速率越大; (6)颗粒的入射角度会影响弯管的冲蚀效应,其影响程度需结合入口直管长度与颗粒运动状态分析。
在现代工业过程中,故障预测可以及时预测设备的潜在故障,减少事故的发生以及降低经济损失,因此故障预测对于过程系统至关重要。由于过程系统的复杂性以及运行数据集分布不均,使用正常数据集离线预测运行状态的方法没有较好的泛用性,且不太准确。针对以上问题,将卷积神经网络(CNN)与长短期记忆网络(LSTM)相结合,用于提取设备运行数据的特征,在线预测之后的运行状态;随后将预测结果送入在离线状态下训练好的局部异常因子(LOF)模型中,计算预测出时间序列的异常值;最后将异常值与离线状态下训练出的故障阈值进行比较,大于阈值则认为存在潜在故障。将模型用于田纳西-伊斯曼(TE)时间序列进行验证,并与传统的故障预测方法进行比较,实验结果表明:本文所提模型对于多故障以及单故障预测相比传统故障预测方法均具有更好的效果,可以提前1个采样窗口检测到数据异常,有应用于工业故障预测的潜力。
在图像恢复过程中,奇点集检测结果的准确性很大程度上会受到噪声的干扰,并且在其检测的迭代过程中易陷入局部最优。利用随机全局搜索的思想,借鉴遗传算法的变异操作,提出一种基于小波框架的具有随机单向变异操作的奇点集检测图像去噪算法,在保证图像恢复效果的同时,极大缩短了运算时间。最后通过实验验证了该算法的有效性。