Welcome to Journal of Beijing University of Chemical Technology, Today is
Email Alert  RSS

Empirical likelihood-based inference via composite quantile regression with longitudinal data

  • LIU JiaLe ,
  • HUANG Bin
Expand
  • College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 2019-06-26

  Online published: 2020-01-20

Abstract

In this paper, empirical likelihood-based inference procedure via composite quantile regression with longitudinal data is investigated. By incorporating correlation within subjects, the proposed method produces more efficient and robust estimators. The theoretical properties of the resulting composite quantile regression empirical likelihood estimator (CQREL) are established. The proposed empirical log-likelihood ratio statistics has an asymptotic standard chi-square distribution, and hence the confidence region for the parameter of interest can be constructed. Simulation studies indicate that the proposed empirical likelihood procedure has good performance.

Cite this article

LIU JiaLe , HUANG Bin . Empirical likelihood-based inference via composite quantile regression with longitudinal data[J]. Journal of Beijing University of Chemical Technology, 2020 , 47(1) : 107 -112 . DOI: 10.13543/j.bhxbzr.2020.01.017

References

[1] KOENKER R. Quantile regression[M]. Cambridge:Cambridge University Press, 2005.
[2] KOENKER R. Quantile regression for longitudinal data[J]. Journal of Multivariate Analysis, 2004, 91(1):74-89.
[3] LV J, GUO C H. Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data[J]. Computational Statistics, 2017, 32(3):947-975.
[4] OWEN A B. Empirical likelihood[M]. New York:Chapman&Hall/CRC, 2001.
[5] QU A N, LINDSAYB G, LI B. Improving generalised estimating equations using quadratic inference functions[J]. Biometrika, 2000, 87(4):823-836.
[6] LV J, GUO C H, YANG H, et al. A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data[J]. Computational Statistics&Data Analysis, 2017, 112:129-144.
[7] ZOU H, YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics, 2008, 36(3):1108-1126.
[8] TANG Y L, WANG Y F, LI J R, et al. Improving estimation efficiency in quantile regression with longitudinal data[J]. Journal of Statistical Planning and Inference, 2015, 165:38-55.
[9] ZHAO W H, LIAN H, SONG X Y. Composite quantile regression for correlated data[J]. Computational Statistics&Data Analysis, 2017, 109:15-33.
[10] HANSEN L P. Large sample properties of generalized method of moments estimators[J]. Econometrica, 1982,50(4):1029-1054.
[11] ZHAO P X, ZHOU X S, LIN L. Empirical likelihood for composite quantile regression modeling[J]. Journal of Applied Mathematics and Computing, 2015, 48(1/2):321-333.
[12] ZHAO P X, ZHOU X S, LIN L. Robust empirical likelihood for partially linear models via weighted composite quantile regression[J]. Computational Statistics, 2018, 33(2):659-674.
[13] LIANG K Y, ZEGER S L. Longitudinal data analysis using generalized linear models[J]. Biometrika, 1986, 73(1):13-22.
[14] JUNG S H. Quasi-likelihood for median regression models[J]. Journal of the American Statistical Association, 1996, 91(433):251-257.
[15] YANG Y W, HE X M. Bayesian empirical likelihood for quantile regression[J]. The Annals of Statistics, 2012, 40(2):1102-1131.
[16] HE X M, SHAO Q M. A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs[J]. The Annals of Statistics, 1996, 24(6):2608-2630.
[17] MOLANES LOPEZ E M, VAN KEILEGOM I, VERAVERBEKE N. Empirical likelihood for non-smooth criterion functions[J]. Scandinavian Journal of Statistics, 2009, 36(3):413-432.
[18] RAO C R. Linear statistical inference and its applications[M]. New York:John Wiley&Sons, 1973.
Outlines

/