[1]Hammerschmidt E G. Formation of gas hydrates in natural gas transmission lines[J]. Industrial & Engineering Chemistry, 1934, 26: 851-855.
[2]Dendy Sloan E. Fundamental principles and applications of natural gas hydrates[J]. Nature,
2003, 426: 353-359.
[3]Gbaruko B C, Igwe J C, Gbaruko P N, et al. Gas hydrates and clathrates: Flow assurance, environmental and economic perspectives and the Nigerian liquified natural gas project. Journal of Petroleum Science and Engineering, 2007, 56: 192-198.
[4Kang S P, Lee H. Recovery of CO2 from flue gas using gas hydrate: Thermodynamic verification through phase equilibrium measurements. Environmental Science & Technology, 2000, 34: 4397-4400.
[5]Kubota H, Shimizu K, Tanaka Y, et al. Thermodynamic properties of R13(CClF3), R23 (CHF3), R152a (C2H4F2), and propane hydrates for desalination of sea water[J]. Journal of Chemical Engineering of Japan, 1984, 17(4): 42〖JP9〗3-〖JP〗429.
[6]Brewer P G, Friederich G, Peltzer E T, et al. Direct experiments on the ocean disposal of fossil fuel CO2[J]. Science, 1999, 284: 943-945.
[7]Kida M, Suzuki K, Kawamura T, et al. Characteristics of natural gas hydrates occurring in porespaces of marine sediments collected from the eastern Nankai Trough, off Japan[J]. Energy
Fuels, 2009, 23: 5580-5586.
[8]Chattaraj P K, Bandaru S, Mondal S. Hydrogen storage in clathrate hydrates[J]. The Jounal
of Physical Chemistry A, 2011, 115: 187-193.
[9]Buch V, Devlin J P, Monreal I A, et al. Clathrate hydrates with hydrogen bonding guests[J]. Physical Chemistry Chemical Physics, 2009, 11: 10245-10265.
[10]Tung Y T, Chen L J, Chen Y P, et al. The growth of structure I methane hydrate from molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2010, 114: 10804-10813.
[11]Lenz A, Ojam e L. Structures of the I-, II- and H-methane clathrates and the ice-methane clathrate phase transition from quantum-chemical modeling with force-field thermal corrections[J]. The Journal of Physical Chemistry A, 2011, 115: 6169-6176.
[12]Ramya K R, Venkatnathan A. Stability and reactivity of methane clathrate hydrates: insights
from density functional theory[J]. The Journal of Physical Chemistry A, 2012, 116 : 7742-7745.
[13]Hawtin R W, Quigley D, Rodger P M. Gas hydrate nucleation and cage formation at a water/methane interface[J]. Physical Chemistry Chemical Physics, 2008, 10: 4853-4864.
[14]Freer E M, Selim M S, Jr. Sloan E D. Methane hydrate film growth kinetics[J]. Fluid Phase
Equilibria, 2001, 185: 65-75.
[15]Nguyen A H, Jacobson L C, Molinero V. Structure of the clathrate/solution interface and mechanism of cross-nucleation of clathrate hydrates[J]. The Journal of Physical Chemistry C, 2012, 116: 19828-19838.
[16]Srivastava H K, Sastry G N. Viability of clathrate hydrates as CO2 capturing agents: a theoretical study[J]. The Journal of Physical Chemistry A, 2011, 115: 7633-7637.
[17]Bagherzadeh S A, Alavi S, Ripmeester J A, et al. Evolution of methane during gas hydrate
dissociation[J]. Fluid Phase Equilibria, 2013, 358: 114-120.
[18]Demirbas A. Methane hydrates as potential energy resource: Part 2 Methane production
processes from gas hydrates[J]. Energy Conversion and Management, 2010, 51: 1562-1571.
[19]Kirchner M T, Boese R, Billups W E, et al. Gas hydrate single crystal structure analyses
[J]. Journal of the American Chemical Society, 2004, 126: 9407-9412.
[20]Lenz A, Ojam e L. On the stability of dense versus cage shaped water clusters: Quantumchemical investigations of zero-point energies, free energies, basis-set effects and IR spectra of (H2O)12 and (H2O)20 [J]. Chemical Physics Letters, 2006, 418: 361-367.
[21] Becke A D. Density functional exchange energy approximation with correct asymptotic
behavior[J]. Physical Review A, 1988, 38(6): 3098-3100.
[22]Lee C, Yang W T, Parr R G. Development of the collesalvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.