
Preparation of multienzyme complexes and their applications in cascade reactions
CHEN BiQiang;CUI CaiXia;XIE Rong;TAN TianWei
Journal of Beijing University of Chemical Technology ›› 2014, Vol. 41 ›› Issue (5) : 1-8.
Preparation of multienzyme complexes and their applications in cascade reactions
[1]Adlercreutz P. Immobilisation and application of lipases in organic media[J]. Chemical Society Reviews, 2013, 42: 6406-6436.
[2]Ferreira-Dias S, Sandoval G, Plou F, et al. The potential use of lipases in the production of fatty acid derivatives for the food and nutraceutical industries[J]. Electronic Journal of Biotechnology, 2013, 16(3):1-24. DOI: 10.2225/vol16-issue3-fulltext-5.
[3]Velasco-Lozano S, López-Gallego F, Vázquez-Duhalt R, et al. Carrier-Free Immobilization of Lipase from Candida rugosa with Polyethyleneimines by Carboxyl-Activated Cross-Linking[J]. Biomacromolecules, 2014, 15(5): 1896-1903.
[4]Yoshimoto M, Takaki N, Yamasaki M. Catalase-conjugated liposomes encapsulating glucose oxidase for controlled oxidation of glucose with decomposition of hydrogen peroxide produced[J]. Colloids and Surfaces B: Biointerfaces, 2010, 79(2): 403-408.
[5]Arockiaraj J, Gnanam A J, Palanisamya R, et al. A cytosolic glutathione s-transferase, GST-theta from freshwater prawn Macrobrachium rosenbergii: molecular and biochemical properties[J]. Gene, 2014, 546(2): 437-442.
[6]Conrado R J, Varner J D, DeLisa M P. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy[J]. Current Opinion in Biotechnology, 2008, 19(5): 492-499.
[7]Zhang Y H P. Simpler Is Better: High-Yield and Potential Low-Cost Biofuels Production through Cell-Free Synthetic Pathway Biotransformation (SyPaB)[J]. ACS Catalysis, 2011, 1(9): 998-1009.
[8]Idan O, Hess H. Engineering enzymatic cascades on nanoscale scaffolds[J]. Current Opinion in Biotechnology, 2013, 24(4): 606-611.
[9]Cao L Q, van Langeny L, Sheldon R A. Immobilised enzymes: carrier-bound or carrier-free?[J]. Current Opinion in Biotechnology, 2003, 14(4): 387–394.
[10]Grotzky A, Nauser T, Erdogan H , et al. A Fluorescently Labeled Dendronized Polymer–Enzyme Conjugate Carrying Multiple Copies of Two Different Types of Active Enzymes[J]. Journal of the American Chemical Society, 2012, 134(28): 11392-11395.
[11]Zhang L, Shi J F, Jiang Z Y, et al. Bioinspired preparation of polydopamine microcapsule for multienzyme system construction[J]. Green Chemistry, 2011, 13(2): 300-306.
[12]Ciaurriz P, Bravo E, Hamad-Schifferli K. Effect of architecture on the activity of glucose oxidase/horseradish peroxidase/carbon nanoparticle conjugates[J]. Journal of Colloid Interface Science, 2014, 414: 73-81.
[13]van Dongen S F M, Nallani M, Cornelissen J J L M, et al. A Three-Enzyme Cascade Reaction through Positional Assembly of Enzymes in a Polymersome Nanoreactor[J]. Chemistry-A European Journal, 2009, 15(5): 1107-1114.
[14]Schoffelen S, Beekwilder J, Debets M F, et al. Construction of a Multifunctional Enzyme Complex via the Strain-Promoted Azide-Alkyne Cycloaddition[J]. Bioconjugate Chemistry, 2013, 24(6): 987-996.
[15]Haga T, Hirakawa H, Nagamune T. Fine Tuning of Spatial Arrangement of Enzymes in a PCNA-Mediated Multienzyme Complex Using a Rigid Poly-L-Proline Linker[J]. PLOS ONE, 2013, 8(9):1-11.
[16]Hirakawa H, Kakitani A, Nagamune T. Introduction of Selective Intersubunit Disulfide Bonds into Self-Assembly Protein Scaffold to Enhance an Artificial Multienzyme Complex’s Activity[J]. Biotechnology and Bioengineering, 2013, 110(7): 1858-1864.
[17]Watanabe H, Hirakawa H, Nagamune T. Phosphite-driven Self-sufficient Cytochrome P450[J]. ChemCatChem, 2013, 5(12): 3835-3840.
[18]Fontes C M G A, Gilbert H J. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates[J]. Annual Review of Biochemistry, 2010, 79: 655-681.
[19]Tsai S L, Oh J, Singh S, et al. Functional assembly of minicellulosomes on Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production[J]. Applied and Environmental Microbiology, 2009, 75(19): 6087-6093.
[20]Tsai S L, Goyal G, Chen W. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production[J]. Applied and Environmental Microbiology, 2010, 76(22): 7514-7520.
[21]Goyal G, Tsai S L, Madan B, et al. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome[J]. Microbial Cell Factories, 2011, 10: 89-96.
[22]Wen F, Sun J, Zhao H M. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol[J]. Applied and Environmental Microbiology, 2010, 76(4): 1251-1260.
[23]Sun J, Wen F, Si T, et al. Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome[J]. Applied and Environmental Microbiology, 2012, 78(11): 3837-3845.
[24]Fan L H, Zhang Z J, Yu X Y, et al. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production[J]. Proceedings of the National Academy of Sciences, 2012, 109(33): 13260-13265. [25]You C, Myung S, Zhang Y H P. Facilitated Substrate Channeling in a Self‐Assembled Trifunctional Enzyme Complex[J]. Angewandte Chemie International Edition, 2012, 51(35): 8787-8790.
[26]Myung S, Youa C, Zhang Y H P. Recyclable cellulose-containing magnetic nanoparticles: immobilization of cellulose-binding module-tagged proteins and a synthetic metabolon featuring substrate channeling[J]. Journal of Materials Chemistry B, 2013, 1(35): 4419-4427.
[27]Niemeyer C M, Boldt L, Ceyhan B, et al. DNA-directed immobilization: efficient, reversible, and site-selective surface binding of proteins by means of covalent DNA-streptavidin conjugates[J]. Analytical Biochemistry, 1999, 268(1): 54-63.
[28]Liu Y, Du J J, Yan M, et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication[J]. Nature Nanotechnology, 2003, 8(3): 187-192.
[29]Rothemund P W K. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 440(7082): 297-302.
[30]Wilner O I, Weizmann Y, Gill R, et al. Enzyme cascades activated on topologically programmed DNA scaffolds[J]. Nature Nanotechnology, 2009, 4(4): 249-254.
[31]Fu J L, Liu M H, Liu Y, et al. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures[J]. Journal of the American Chemical Society, 2012, 134(12): 5516-5519.
/
〈 |
|
〉 |