Metabolic network balanced depends on a novel pathway using glycerol to produce 1,2- propanediol in Escherichia coli

SHEN XiaoLin;YUAN QiPeng

Journal of Beijing University of Chemical Technology ›› 2014, Vol. 41 ›› Issue (4) : 83-88.

PDF(866 KB)
Welcome to Journal of Beijing University of Chemical Technology, Today is May 14, 2025
Email Alert  RSS
PDF(866 KB)
Journal of Beijing University of Chemical Technology ›› 2014, Vol. 41 ›› Issue (4) : 83-88.
生物技术与环境工程

Metabolic network balanced depends on a novel pathway using glycerol to produce 1,2- propanediol in Escherichia coli

  • SHEN XiaoLin;YUAN QiPeng
Author information +
History +

Abstract

Inexpensive glycerol has been used as a carbon source to produce 1, 2-propanediol by E. coli. We constructed a novel metabolic pathway using glycerol to produce 1, 2-propanediol in E. coli by knocking out competing acetate metabolic pathways. By enhancing the upstream metabolic pathway from glycerol to dihydroxyacetone phosphate, and balancing the metabolic network, carbon flux and energy, knockout strains ΔtpiA gave the best fermentation results, with the titer of 1, 2-propanediol being 1.3 g/L and the yield reaching 0.21g/g.

Cite this article

Download Citations
SHEN XiaoLin;YUAN QiPeng. Metabolic network balanced depends on a novel pathway using glycerol to produce 1,2- propanediol in Escherichia coli[J]. Journal of Beijing University of Chemical Technology, 2014, 41(4): 83-88

References

[1] Maris E P, Davis R J. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts[J]. Journal of Catalysis, 2007, 249: 328-337.
[2] Maris E P, Ketchie W C, Murayama M, et al. Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts[J]. Journal of Catalysis, 2007, 251: 281-294.
[3] Dasari M A, Kiatsimkul P P, Sutterlin W R, et al. Low-pressure hydrogenolysis of glycerol to propylene glycol[J]. Applied Catalysis A: General, 2005, 281: 225-231.
[4] Shelley S. A renewable route to propylene glycol[J]. Chemical Engineering Progress, 2007, 103: 6-9.
[5] Jiménez-Morales I, Vila F, Mariscal R, et al. Hydrogenolysis of glycerol to obtain 1,2-propanediol on Ce-promoted Ni/SBA-15 catalysts[J]. Applied Catalysis B: Environmental, 2012, 117/118: 253-259.
[6] Gandarias I, Arias P L, Requies J, et al. Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source[J]. Journal of Catalysis, 2011, 282: 237-247.
[7] Roy D, Subramaniam B, Chaudhari R V. Aqueous phase hydrogenolysis of glycerol to 1,2-propanediol without external hydrogen addition[J]. Catalysis Today, 2010, 156: 31-37.
[8] Cameron D C, Cooney C L. A novel fermentation: The production of R(-)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum[J]. Nature Biotechnology, 1986, 4: 651-654.
[9] Huang K X, Rudolph F B, Bennett G N. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2-propanediol[J]. Applied and Environmental Microbiology, 1999, 65: 3244-3247.
[10] Lee J W, Na D, Park J M, et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals[J]. Nature Chemical Biology, 2012, 8: 536-546.
[11] Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496: 528-532.
[12] Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451: 86-89.
[13] Durnin G, Clomburg J, Yeates Z, et al. Understanding and Harnessing the microaerobic metabolism of glycerol in Escherichia coli[J]. Biotechnology and Bioengineering, 2009, 103: 148-161.
[14] Murarka A, Dharmadi Y, Yazdani S S, et al. Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals[J]. Applied and Environmental Microbiology, 2008, 74: 1124-1135.
[15] Braun T, Philippsen A, Wirtz S, et al. The 3.7 Å projection map of the glycerol facilitator GlpF: a variant of the aquaporin tetramer[J]. European Molecular Biology Organization, 2000, 1: 183-189.
[16] Altaras N E, Cameron D C. Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli[J]. Biotechnology Progress, 2000, 16: 940-946.
[17] Cortright R D, Sanchez-Castillo M, Dumesic J A. Conversion of biomass to 1,2-propanediol by selective catalytic hydrogenation of lactic acid over silica- supported copper[J]. Applied Catalysis B: Environmental, 2002, 39: 353-359.
[18] Mijts B N, Schmidt-Dannert C. Engineering of secondary metabolite pathways[J]. Current Opinion in Biotechnology, 2003, 14: 597-602.
[19] Yang Y T, Bennett G N, San K Y. Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli[J]. Biotechnology and Bioengineering, 1999, 65: 291-297.
[20] Yang Y T, Aristidou A A, San K Y, et al. Metabolic flux analysis of Escherichia coli deficient in the acetate production pathway and expressing the Bacillus subtilis acetolactate synthase[J]. Matebotic Engineering, 1999, 1: 26-34.
[21] Shen X L, Lin Y H, Jain R, et al. Inhibition of acetate accumulation leads to enhanced production of (R,R)-2,3-butanediol from glycerol in Escherichia coli[J]. Journal of Industrial Microbiology Biotechnology, 2012, 39: 1725-1729.
[22] Berthelot K, Estevez Y, Deffieux A, et al. Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis[J]. Biochimie, 2012, 94: 1621-1634.
[23] Dharmadi Y, Murarka A, Gonzalez R. Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering[J]. Biotechnology and Bioengineering, 2006, 94: 821-829.
PDF(866 KB)

1152

Accesses

0

Citation

Detail

Sections
Recommended

/