[1] 王海清, 宋执环, 王慧. PCA过程监控方法的故障检测行为分析[J]. 化工学报,2002,53(3):297-301.
Wang H Q, Song Z H, Wang H. Fault detection behavior analysis of PCA-based process monitoring approach[J]. Journal of Chemical Industry and Engineering(China),2002,53(3):297-301.(in Chinese)
[2] 许洁. 基于统计理论的工业过程性能监控与故障诊断研究[D]. 南京:南京航空航天大学,2010:23-31.
Xu J. Researches on performance monitoring and fault diagnosis for process industry based on statistical theory[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2010:23-31.(in Chinese)
[3] 胡静. 相对主元分析理论及其运用研究[D]. 河南 开封:河南大学,2008:42-46.
Hu J. Research on relative PCA theory with
its application[D]. Kaifeng, Henan: Henan University, 2008: 42-46. (in Chinese)
[4] 王天真, 汤天浩, 文成林, 等. 相对主元分析方法及其在故障检测中的应用[J]. 系统仿真学报,2007,19(13):2889-2894.
Wang T Z, Tang T H, Wen C L, et al. Relative principal component analysis algorithm and its application infault detection[J]. Journal of System Simulation,2007,19(13): 2889-2894.(in Chinese)
[5] Qin S J. Statistical process monitoring: basics and beyond[J]. Journal of Chemometrics,2003,17: 480-502.
[6] 张光明, 李柠, 李少远. 一种数据驱动的预测控制器性能监控方法[J]. 上海交通大学学报,2011,45(8):1113-1118.
Zhang G M, Li N, Li S Y. A data-driven approach for model predictive control performance monitoring[J]. Journal of Shanghai Jiaotong University,2011,45(8): 1113-1118. (in Chinese)
[7] Downs J J, Vogel E F.A plant-wide industrial processcontrol problem[J]. Computers Chem Engng,1993,17(3): 245-255.