
Research of electrical bistable memory materials based on polyimide
QI ShengLi;JIA NanFang;SHI LeiT;IAN GuoFeng;WU DeZhen
Journal of Beijing University of Chemical Technology ›› 2014, Vol. 41 ›› Issue (2) : 1-12.
Research of electrical bistable memory materials based on polyimide
[1]Ling Q D, Liaw D J, Zhu C, et al. Polymer electronic memories: Materials, devices and mechanisms[J]. Progress in Polymer Science, 2008,33(10): 917-978.
[2]Ling Q D, Liaw D J, Teo E Y, et al. Polymer memories: Bistable electrical switching and device performance[J]. Polymer, 2007,48(18): 5182-5201.
[3]Chu C W, Ouyang J Y, Tseng J H, et al. Organic DonorAcceptor System Exhibiting Electrical Bistability for Use in Memory Devices[J]. Advanced Materials, 2005,17: 1440-1443.
[4]Heremans P, Gelinck G H, Muüller R, et al. Polymer and Organic Nonvolatile Memory Devices[J]. Chemistry of Materials, 2011,23(3): 341-358.
[5]Jiang G Y, Michinobu T, Yuan W F, et al. Crystalline thin film of donorsubstituted cyanoethynylethene for nanoscale data recording through intermolecular chargetransfer interactions[J]. Advanced Materials, 2005,17: 2170-2173.
[6]Karakawa M, Chikamatsu M, Yoshida Y, et al. Organic Memory Device Based on CarbazoleSubstituted Cellulose[J]. Macromolecular Rapid Communications, 2007,28(14): 1479-1484.
[7]Yu A D, Kurosawa T, Chou Y H, et al. Tunable electrical memory characteristics using polyimide: polycyclic aromatic compound blends on flexible substrates[J]. ACS Applied Materials and Interfaces, 2013,5(11): 4921-4929.
[8]Yan B L, Sun R, Ge J F, et al. Electronic memory devices based on the chalcone with negative electrostatic potential regions[J]. Materials Chemistry and Physics, 2013,142(1): 363-369.
[9]Son J Y, Song H. Molecular scale electronic devices using single molecules and molecular monolayers[J]. Current Applied Physics, 2013,13(7): 1157-1171.
[10]Chen C J, Hu Y C, Liou G S. Linkage and acceptor effects on diverse memory behavior of triphenylaminebased aromatic polymers[J]. Polymer Chemistry, 2013,4(15): 4162-4171.
[11]Kurosawa T, Higashihara T, Ueda M. Polyimide memory: a pithy guideline for future applications[J]. Polymer Chemistry, 2013,4(1): 16-30.
[12]郑晨溪. 光存储技术研究进展[J]. 信息系统工程, 2009(9): 20-23.
Zheng C X. Optical memory technology[J]. China cio news, 2009(9): 20-23. (in Chinese)
[13]张立. 信息存储技术的现状及发展[J]. 信息记录材料, 2006,7(5): 47-54.
Zhang L. Information recording materials[J]. Recording Media, 2006, 7(5): 47-54. (in Chinese)
[14]凌启淡, 仝淑敏, 宋娟. 聚合物电存储材料及其双电极型存储器件[J]. 化学进展, 2011,23(8): 1700-1709.
Ling Q D, Tong S M, S J. Polymer electrical memory materials and diode memory devices[J]. Progress in Chemistry, 2011,23(8): 1700-1709. (in Chinese)
[15]高鸿钧, 时东霞, 张昊旭等. 超高密度信息存储分子存储及其存储机理[J]. 物理, 2001,30(8): 453-455.
Gao H J, Shi D X, Zhang H X, et al. Ultrahigh density data storage and molecular recording[J]. Physics, 2001,30(8): 453-455. (in Chinese)
[16]郑文静, 李明强, 舒继武. Flash存储技术[J]. 计算机研究与发展, 2010,47(4): 716-726.
Zheng W J, Li M Q, Shu J W. Flash storage technology[J]. Journal of Computer Research and Development, 2010,47(4): 716-726. (in Chinese)
[17]Ling Q D, Chang F C, Song Y, et al. Synthesis and Dynamic Random Access Memory Behavior of a Functional polyimide[J]. Journal of American Chemsitry Society, 2006,128(27): 8732-8733.
[18]Liu Y L, Ling Q D, Kang E T, et al. Volatile electrical switching in a functional polyimide containing electrondonor andacceptor moieties[J]. Journal of Applied Physics, 2009,105(4): 044501
[19]Liu Y L, Wang K L, Huang G S, et al. Volatile electrical switching and static random access memory effect in a functional polyimide containing oxadiazole moieties[J]. Chemistry of Materials, 2009,21(14): 3391-3399.
[20]Kurosawa T, Chueh C C, Liu C L, et al. High performance volatile polymeric memory devices based on novel triphenylaminebased polyimides containing mono or dualmediated phenoxy linkages[J]. Macromolecules, 2010,43(3): 1236-1244.
[21]Chen C J, Yen H J, Chen W C, et al. Novel HighPerformance Polymer Memory Devices Containing (OMe)(2)Tetraphenylpphenylenediamine Moieties[J]. Journal of Polymer Science Part aPolymer Chemistry, 2011,49(17): 3709-3718.
[22]Chen C J, Yen H J, Chen W C, et al. Resistive switching nonvolatile and volatile memory behavior of aromatic polyimides with various electronwithdrawing moieties[J]. Journal of Materials Chemistry, 2012,22(28): 14085-14093.
[23]Tian G F, Wu D Z, Qi S L, et al. Dynamic random access memory effect and memory device derived from a functional polyimide containing electron donoracceptor pairs in the main chain[J]. Macromol Rapid Commun, 2011,32(4): 384-389.
[24]Hu Y C, Chen C J, Yen H J, et al. Novel triphenylaminecontaining ambipolar polyimides with pendant anthraquinone moiety for polymeric memory device, electrochromic and gas separation applications[J]. Journal of Materials Chemistry, 2012,22(38): 20394.
[25]Liu C L, Kurosawa T, Yu A D, et al. New dibenzothiophenecontaining donoracceptor polyimides for Highperformance memory device applications[J]. The Journal of Physical Chemistry C, 2011,115(13): 5930-5939.
[26]Liu Y, Zhang Y, Lan Q, et al. Highperformance functional polyimides containing rigid nonplanar conjugated triphenylethylene moieties[J]. Chemistry of Materials, 2012,24(6): 1212-1222.
[27]You N H, Chueh C C, Liu C L, et al. Synthesis and memory device characteristics of new sulfur donor containing polyimides[J]. Macromolecules, 2009,42(13): 4456-4463.
[28]Wang K L, Liu Y L, Shih I H, et al. Synthesis of polyimides containing triphenylaminesubstituted triazole moieties for polymer memory applications[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010,48(24): 5790-5800.
[29]Wang K L, Liu Y L, Lee J W, et al. Nonvolatile Electrical Switching and WriteOnce ReadManyTimes Memory Effects in Functional Polyimides Containing Triphenylamine and 1,3,4Oxadiazole Moieties[J]. Macromolecules, 2010,43(17): 7159-7164.
[30]Tian G F, Wu D Z, Shi L, et al. Nonvolatile electrical switching behavior observed in a functional polyimide thin film embedded with silver nanoparticles[J]. RSC Advances, 2012,2(26): 9846-9850.
[31]Kurosawa T, Lai Y C, Higashihara T, et al. Tuning the electrical memory characteristics from volatile to nonvolatile by perylene imide composition in random copolyimides[J]. Macromolecules, 2012,45(11): 4556-4563.
[32]Yu A D, Kurosawa T, Lai Y C, et al. Flexible polymer memory devices derived from triphenylaminepyrene containing donoracceptor polyimides[J]. Journal of Materials Chemistry, 2012,22(38): 20754-20763.
[33]Li Y, Fang R, Ding S, et al. Rewritable and nonvolatile memory effects based on polyimides containing pendant carbazole and triphenylamine groups[J]. Macromolecular Chemistry and Physics, 2011,212(21): 2360-2370.
[34]Li Y, Xu H, Tao X, et al. Resistive switching characteristics of polyimides derived from 2,2′aryl substituents tetracarboxylic dianhydrides[J]. Polymer International, 2011,60(12): 1679-1687.
[35]Li Y, Xu H, Tao X, et al. Synthesis and memory characteristics ofhighly organosoluble polyimides bearing a noncoplanar twisted biphenyl unit containing aromatic sidechain groups[J]. Journal of Materials Chemistry, 2011,21(6): 1810-1821.
[36]Li Y Q, Fang R C, Zheng A M, et al. Nonvolatile memory devices based on polyimides bearing noncoplanar twisted biphenyl units containing carbazole and triphenylamine sidechain groups[J]. Journal of Materials Chemistry, 2011,21(39): 15643-15654.
[37]Li Y, Chu Y, Fang R, et al. Synthesis and memory characteristics of polyimides containing noncoplanar aryl pendant groups[J]. Polymer, 2012,53(1): 229-240.
[38]Lee W Y, Kurosawa T, Lin S T, et al. New donoracceptor oligoimides for highperformance nonvolatile memory devices[J]. Chemistry of Materials, 2011,23(20): 4487-4497.
[39]Kurosawa T, Yu A D, Higashihara T, et al. Inducing a high twisted conformation in the polyimide structure by bulky donor moieties for the development of nonvolatile memory[J]. European Polymer Journal, 2013,49(10): 3377-3386.
[40]Lee T J, Chang C W, Hahm S G, et al. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide[J]. Nanotechnology, 2009,20(13): 135204.
[41]Kim D M, Park S, Lee T J, et al. Programmable permanent data storage characteristics of nanoscale thin films of a thermally stable aromatic polyimide[J]. Langmuir, 2009,25(19): 11713-11719.
[42]Hahm S G, Choi S, Hong S H, et al. Novel rewritable, nonvolatile memory devices based on thermally and dimensionally stable polyimide thin films[J]. Advanced Functional Materials, 2008,18(20): 3276-3282.
[43]Hahm S G, Choi S, Hong S H, et al. Electrically bistable nonvolatile switching devices fabricated with a high performance polyimide bearing diphenylcarbamyl moieties[J]. Journal of Materials Chemistry, 2009,19(15): 2207-2214.
[44]Kyungtae K, Samdae P, Suk G H, et al. Nonvolatile unipolar and bipolar bistable memory characteristics of a high temperature polyimide bearing diphenylaminobenzylidenylimine moieties[J]. Journal of Physical Chemistry B, 2009,113(27): 9143-9150.
[45]Liu Q, Jiang K, Wang L, et al. Distinct electronic switching behaviors of triphenylaminecontaining polyimide memories with different bottom electrodes[J]. Applied Physics Letters, 2010,96(21): 213305.
[46]Samdae P, Kyungtae K, Dong M K. High temperature polyimide containing anthracene moiety and its structure, interface, and nonvolatile memory behavior[J]. ACS Applied Materials Interfaces, 2011,3(3): 765-773.
[47]Tian G F, Qi S L, Chen F, et al. Nonvolatile memory effect of a functional polyimide containing ferrocene as the electroactive moiety[J]. Applied Physics Letters, 2011,98(20): 203302.
[48]Chen F, Tian G F, Shi L, et al. Nonvolatile writeonce readmanytimes memory device based on an aromatic hyperbranched polyimide bearing triphenylamine moieties[J]. RSC Advances, 2012,2(33): 12879-12885.
[49]Shi L, Ye H B, Liu W L, et al. Tuning the electrical memory characteristics from WORM to flash by α and βsubstitution of the electrondonating naphthylamine moieties in functional polyimides[J]. Journal of Materials Chemistry C, 2013,1(44): 7387-7399.
[50]Kim D M, Ko Y G, Choi J K, et al. Digital memory behaviors of aromatic polyimides bearing bis(trifluoromethyl)and bithiophenyltriphenylamine units[J]. Polymer, 2012,53(8): 1703-1710.
[51]Ko Y G, Kwon W, Yen H J, et al. Various digital memory behaviors of functional aromatic polyimides based on electron donor and acceptor substituted triphenylamines[J]. Macromolecules, 2012,45(9): 3749-3758.
[52]Lee T J, Ko Y G, Yen H J, et al. Programmable digital nonvolatile memory behaviors of donoracceptor polyimides bearing triphenylamine derivatives: effects of substituents[J]. Polymer Chemistry, 2012,3(5): 1276-1283.
[53]Liu Q, Jiang K, Wen Y, et al. Highperformance optoelectrical dualmode memory based on spiropyrancontaining polyimide[J]. Applied Physics Letters, 2010,97(25): 253304.
[54]Shi L, Tian G F, Ye H B, et al. Volatile static random access memory behavior of an aromatic polyimide bearing carbazoletethered triphenylamine moieties[J]. Polymer, 2014. DOI: 10.1016/j.polymer.2013.12.046.
/
〈 |
|
〉 |