Research of electrical bistable memory materials based on polyimide

QI ShengLi;JIA NanFang;SHI LeiT;IAN GuoFeng;WU DeZhen

Journal of Beijing University of Chemical Technology ›› 2014, Vol. 41 ›› Issue (2) : 1-12.

PDF(3488 KB)
Welcome to Journal of Beijing University of Chemical Technology, Today is May 4, 2025
Email Alert  RSS
PDF(3488 KB)
Journal of Beijing University of Chemical Technology ›› 2014, Vol. 41 ›› Issue (2) : 1-12.
专题综述

Research of electrical bistable memory materials based on polyimide

  • QI ShengLi;JIA NanFang;SHI LeiT;IAN GuoFeng;WU DeZhen
Author information +
History +

Abstract

In this paper, we first introduce some basic concepts of polymer memory materials. Subsequently, recent research on the applications of functional polyimides in information technology is summarized and volatile and nonvolatile memory behavior are illustrated. Then four methods to control the volatility of polyimides are proposed, based on the mechanisms responsible for electrical bistable memory behavior. Finally, the remaining problems to be resolved are discussed and future developments in this field are predicted.

Cite this article

Download Citations
QI ShengLi;JIA NanFang;SHI LeiT;IAN GuoFeng;WU DeZhen. Research of electrical bistable memory materials based on polyimide[J]. Journal of Beijing University of Chemical Technology, 2014, 41(2): 1-12

References

[1]Ling Q D, Liaw D J, Zhu C, et al. Polymer electronic memories: Materials, devices and mechanisms[J]. Progress in Polymer Science, 2008,33(10): 917-978.
[2]Ling Q D, Liaw D J, Teo E Y, et al. Polymer memories: Bistable electrical switching and device performance[J]. Polymer, 2007,48(18): 5182-5201.
[3]Chu C W, Ouyang J Y, Tseng J H, et al. Organic DonorAcceptor System Exhibiting Electrical Bistability for Use in Memory Devices[J]. Advanced Materials, 2005,17: 1440-1443.
[4]Heremans P, Gelinck G H, Muüller R, et al. Polymer and Organic Nonvolatile Memory Devices[J]. Chemistry of Materials, 2011,23(3): 341-358.
[5]Jiang G Y, Michinobu T, Yuan W F, et al. Crystalline thin film of donorsubstituted cyanoethynylethene for nanoscale data recording through intermolecular chargetransfer interactions[J]. Advanced Materials, 2005,17: 2170-2173.
[6]Karakawa M, Chikamatsu M, Yoshida Y, et al. Organic Memory Device Based on CarbazoleSubstituted Cellulose[J]. Macromolecular Rapid Communications, 2007,28(14): 1479-1484.
[7]Yu A D, Kurosawa T, Chou Y H, et al. Tunable electrical memory characteristics using polyimide: polycyclic aromatic compound blends on flexible substrates[J]. ACS Applied Materials and Interfaces, 2013,5(11): 4921-4929.
[8]Yan B L, Sun R, Ge J F, et al. Electronic memory devices based on the chalcone with negative electrostatic potential regions[J]. Materials Chemistry and Physics, 2013,142(1): 363-369.
[9]Son J Y, Song H. Molecular scale electronic devices using single molecules and molecular monolayers[J]. Current Applied Physics, 2013,13(7): 1157-1171.
[10]Chen C J, Hu Y C, Liou G S. Linkage and acceptor effects on diverse memory behavior of triphenylaminebased aromatic polymers[J]. Polymer Chemistry, 2013,4(15): 4162-4171.
[11]Kurosawa T, Higashihara T, Ueda M. Polyimide memory: a pithy guideline for future applications[J]. Polymer Chemistry, 2013,4(1): 16-30.
[12]郑晨溪. 光存储技术研究进展[J]. 信息系统工程, 2009(9): 20-23.
Zheng C X. Optical memory technology[J]. China cio news, 2009(9): 20-23. (in Chinese) 
[13]张立. 信息存储技术的现状及发展[J]. 信息记录材料, 2006,7(5): 47-54.
Zhang L. Information recording materials[J]. Recording Media, 2006, 7(5): 47-54. (in Chinese)
[14]凌启淡, 仝淑敏, 宋娟. 聚合物电存储材料及其双电极型存储器件[J]. 化学进展, 2011,23(8): 1700-1709.
Ling Q D, Tong S M, S J. Polymer electrical memory materials and diode memory devices[J]. Progress in Chemistry, 2011,23(8): 1700-1709. (in Chinese) 
[15]高鸿钧, 时东霞, 张昊旭等. 超高密度信息存储分子存储及其存储机理[J]. 物理, 2001,30(8): 453-455.
Gao H J, Shi D X, Zhang H X, et al. Ultrahigh density data storage and molecular recording[J]. Physics, 2001,30(8): 453-455. (in Chinese) 
[16]郑文静, 李明强, 舒继武. Flash存储技术[J]. 计算机研究与发展, 2010,47(4): 716-726.
Zheng W J, Li M Q, Shu J W. Flash storage technology[J]. Journal of Computer Research and Development, 2010,47(4): 716-726. (in Chinese) 
[17]Ling Q D, Chang F C, Song Y, et al. Synthesis and Dynamic Random Access Memory Behavior of a Functional polyimide[J]. Journal of American Chemsitry Society, 2006,128(27): 8732-8733.
[18]Liu Y L, Ling Q D, Kang E T, et al. Volatile electrical switching in a functional polyimide containing electrondonor andacceptor moieties[J]. Journal of Applied Physics, 2009,105(4): 044501
[19]Liu Y L, Wang K L, Huang G S, et al. Volatile electrical switching and static random access memory effect in a functional polyimide containing oxadiazole moieties[J]. Chemistry of Materials, 2009,21(14): 3391-3399.
[20]Kurosawa T, Chueh C C, Liu C L, et al. High performance volatile polymeric memory devices based on novel triphenylaminebased polyimides containing mono or dualmediated phenoxy linkages[J]. Macromolecules, 2010,43(3): 1236-1244.
[21]Chen C J, Yen H J, Chen W C, et al. Novel HighPerformance Polymer Memory Devices Containing (OMe)(2)Tetraphenylpphenylenediamine Moieties[J]. Journal of Polymer Science Part aPolymer Chemistry, 2011,49(17): 3709-3718.
[22]Chen C J, Yen H J, Chen W C, et al. Resistive switching nonvolatile and volatile memory behavior of aromatic polyimides with various electronwithdrawing moieties[J]. Journal of Materials Chemistry, 2012,22(28): 14085-14093.
[23]Tian G F, Wu D Z, Qi S L, et al. Dynamic random access memory effect and memory device derived from a functional polyimide containing electron donoracceptor pairs in the main chain[J]. Macromol Rapid Commun, 2011,32(4): 384-389.
[24]Hu Y C, Chen C J, Yen H J, et al. Novel triphenylaminecontaining ambipolar polyimides with pendant anthraquinone moiety for polymeric memory device, electrochromic and gas separation applications[J]. Journal of Materials Chemistry, 2012,22(38): 20394.
[25]Liu C L, Kurosawa T, Yu A D, et al. New dibenzothiophenecontaining donoracceptor polyimides for Highperformance memory device applications[J]. The Journal of Physical Chemistry C, 2011,115(13): 5930-5939.
[26]Liu Y, Zhang Y, Lan Q, et al. Highperformance functional polyimides containing rigid nonplanar conjugated triphenylethylene moieties[J]. Chemistry of Materials, 2012,24(6): 1212-1222.
[27]You N H, Chueh C C, Liu C L, et al. Synthesis and memory device characteristics of new sulfur donor containing polyimides[J]. Macromolecules, 2009,42(13): 4456-4463.
[28]Wang K L, Liu Y L, Shih I H, et al. Synthesis of polyimides containing triphenylaminesubstituted triazole moieties for polymer memory applications[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010,48(24): 5790-5800.
[29]Wang K L, Liu Y L, Lee J W, et al. Nonvolatile Electrical Switching and WriteOnce ReadManyTimes Memory Effects in Functional Polyimides Containing Triphenylamine and 1,3,4Oxadiazole Moieties[J]. Macromolecules, 2010,43(17): 7159-7164.
[30]Tian G F, Wu D Z, Shi L, et al. Nonvolatile electrical switching behavior observed in a functional polyimide thin film embedded with silver nanoparticles[J]. RSC Advances, 2012,2(26): 9846-9850.
[31]Kurosawa T, Lai Y C, Higashihara T, et al. Tuning the electrical memory characteristics from volatile to nonvolatile by perylene imide composition in random copolyimides[J]. Macromolecules, 2012,45(11): 4556-4563.
[32]Yu A D, Kurosawa T, Lai Y C, et al. Flexible polymer memory devices derived from triphenylaminepyrene containing donoracceptor polyimides[J]. Journal of Materials Chemistry, 2012,22(38): 20754-20763.
[33]Li Y, Fang R, Ding S, et al. Rewritable and nonvolatile memory effects based on polyimides containing pendant carbazole and triphenylamine groups[J]. Macromolecular Chemistry and Physics, 2011,212(21): 2360-2370.
[34]Li Y, Xu H, Tao X, et al. Resistive switching characteristics of polyimides derived from 2,2′aryl substituents tetracarboxylic dianhydrides[J]. Polymer International, 2011,60(12): 1679-1687.
[35]Li Y, Xu H, Tao X, et al. Synthesis and memory characteristics ofhighly organosoluble polyimides bearing a noncoplanar twisted biphenyl unit containing aromatic sidechain groups[J]. Journal of Materials Chemistry, 2011,21(6): 1810-1821.
[36]Li Y Q, Fang R C, Zheng A M, et al. Nonvolatile memory devices based on polyimides bearing noncoplanar twisted biphenyl units containing carbazole and triphenylamine sidechain groups[J]. Journal of Materials Chemistry, 2011,21(39): 15643-15654.
[37]Li Y, Chu Y, Fang R, et al. Synthesis and memory characteristics of polyimides containing noncoplanar aryl pendant groups[J]. Polymer, 2012,53(1): 229-240.
[38]Lee W Y, Kurosawa T, Lin S T, et al. New donoracceptor oligoimides for highperformance nonvolatile memory devices[J]. Chemistry of Materials, 2011,23(20): 4487-4497.
[39]Kurosawa T, Yu A D, Higashihara T, et al. Inducing a high twisted conformation in the polyimide structure by bulky donor moieties for the development of nonvolatile memory[J]. European Polymer Journal, 2013,49(10): 3377-3386.
[40]Lee T J, Chang C W, Hahm S G, et al. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide[J]. Nanotechnology, 2009,20(13): 135204.
[41]Kim D M, Park S, Lee T J, et al. Programmable permanent data storage characteristics of nanoscale thin films of a thermally stable aromatic polyimide[J]. Langmuir, 2009,25(19): 11713-11719.
[42]Hahm S G, Choi S, Hong S H, et al. Novel rewritable, nonvolatile memory devices based on thermally and dimensionally stable polyimide thin films[J]. Advanced Functional Materials, 2008,18(20): 3276-3282.
[43]Hahm S G, Choi S, Hong S H, et al. Electrically bistable nonvolatile switching devices fabricated with a high performance polyimide bearing diphenylcarbamyl moieties[J]. Journal of Materials Chemistry, 2009,19(15): 2207-2214.
[44]Kyungtae K, Samdae P, Suk G H, et al. Nonvolatile unipolar and bipolar bistable memory characteristics of a high temperature polyimide bearing diphenylaminobenzylidenylimine moieties[J]. Journal of Physical Chemistry B, 2009,113(27): 9143-9150.
[45]Liu Q, Jiang K, Wang L, et al. Distinct electronic switching behaviors of triphenylaminecontaining polyimide memories with different bottom electrodes[J]. Applied Physics Letters, 2010,96(21): 213305.
[46]Samdae P, Kyungtae K, Dong M K. High temperature polyimide containing anthracene moiety and its structure, interface, and nonvolatile memory behavior[J]. ACS Applied Materials Interfaces, 2011,3(3): 765-773.
[47]Tian G F, Qi S L, Chen F, et al. Nonvolatile memory effect of a functional polyimide containing ferrocene as the electroactive moiety[J]. Applied Physics Letters, 2011,98(20): 203302.
[48]Chen F, Tian G F, Shi L, et al. Nonvolatile writeonce readmanytimes memory device based on an aromatic hyperbranched polyimide bearing triphenylamine moieties[J]. RSC Advances, 2012,2(33): 12879-12885.
[49]Shi L, Ye H B, Liu W L, et al. Tuning the electrical memory characteristics from WORM to flash by α and βsubstitution of the electrondonating naphthylamine moieties in functional polyimides[J]. Journal of Materials Chemistry C, 2013,1(44): 7387-7399.
[50]Kim D M, Ko Y G, Choi J K, et al. Digital memory behaviors of aromatic polyimides bearing bis(trifluoromethyl)and bithiophenyltriphenylamine units[J]. Polymer, 2012,53(8): 1703-1710.
[51]Ko Y G, Kwon W, Yen H J, et al. Various digital memory behaviors of functional aromatic polyimides based on electron donor and acceptor substituted triphenylamines[J]. Macromolecules, 2012,45(9): 3749-3758.
[52]Lee T J, Ko Y G, Yen H J, et al. Programmable digital nonvolatile memory behaviors of donoracceptor polyimides bearing triphenylamine derivatives: effects of substituents[J]. Polymer Chemistry, 2012,3(5): 1276-1283.
[53]Liu Q, Jiang K, Wen Y, et al. Highperformance optoelectrical dualmode memory based on spiropyrancontaining polyimide[J]. Applied Physics Letters, 2010,97(25): 253304.
[54]Shi L, Tian G F, Ye H B, et al. Volatile static random access memory behavior of an aromatic polyimide bearing carbazoletethered triphenylamine moieties[J]. Polymer, 2014. DOI: 10.1016/j.polymer.2013.12.046.

PDF(3488 KB)

2092

Accesses

0

Citation

Detail

Sections
Recommended

/