[1]Orilik P, Terao H. Arrangements of hyperplanes[M]. Berlin: SpringerVerlag, 1992.
[2]Stanley R P. An introduction to hyperplane arrangements[M]. New York: American Mathematical Society, 2004.
[3]Falk M. Arrangements and cohomology[J]. Annals of Combinatorics, 1997, 1(2): 135-158.
[4]Falk M. Combinatorial and algebraic structure in Orilik-Solomonalgebras[J]. Europ J Combinatorics, 2001, 22(3): 687-698.
[5]Falk M. On the algebra associated with a geometric lattice[J]. Advances in Mathmatics, 1990, 80: 152-163.
[6]张曦, 姜广峰. 超平面构形的Φ3不变量的一个算法[J]. 北京化工大学学报: 自然科学版, 2007, 34(4): 446-448.
Zhang X, Jiang G F. An algorithm for invariant Φ3 of hyperplane arrangements[J]. Journal of Beijing University of Chemical Technilogy: Natural Science, 2007, 34(4): 446-448. (in Chinese)
[7]葛婷, 姜广峰. 一类图构形的Φn不变量[J]. 北京化工大学学报: 自然科学版, 2009, 36(增刊) : 120-123.
Ge T, Jiang G F. Invariant Φn of a class of graphic arrange-ments[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2009, 36(Suppl): 120-123. (in Chinese)
[8]张娟, 郭玲, 姜广峰. 关于平面直线构形的Φ3不变量[J]. 北京化工大学学报: 自然科学版, 2011, 38(6): 125-129.
Zhang J, Guo L, Jiang G F. Invariant Φ3 of line arrangements on a plane[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2011, 38(6): 125-129. (in Chinese)
[9]郭秋敏, 薛菲, 郭玲, 等. 平面直线构形的Φ3不变量[J]. 北京化工大学学报: 自然科学版, 2011, 38(5): 140-143.
Guo Q M, Xue F, Guo L, et al. Invariant Φ3 for line arrangements in a plane[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2011, 38(5): 140-143. (in Chinese)