Use of density gradient ultracentrifugation separation to provide evidence of the size-dependent reactivity of silver nanoplates
ZHANG GuoXin;HUANG FengQin;LUO Liang;SUN XiaoMing
Author information+
School of Science, Beijing University of Chemical Technology, Beijing 100029, China
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
History+
Received
Revised
Published
2012-10-19
1900-01-01
2013-07-20
Issue Date
2013-07-20
Abstract
By employing density gradient ultracentrifugation separation, we have developed a mild etching method for silver nanoplates, in which mercaptoethanol serves as the etchant. It was found that there is a critical crystal lateral size of around 135nm. If the lateral size is below this value, the (110) lattice planes are more reactive, while above this critical size, the (100) lattice planes become more reactive.
ZHANG GuoXin;HUANG FengQin;LUO Liang;SUN XiaoMing.
Use of density gradient ultracentrifugation separation to provide evidence of the size-dependent reactivity of silver nanoplates[J]. Journal of Beijing University of Chemical Technology, 2013, 40(4): 24-29
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]莫博, 阚彩侠, 柯善林, 等. 银纳米片的研究进展 [J]. 物理化学学报, 2012, 28(11): 2511-2524. Mo B, Kan C X, Ke S L, et al. Research progress of silver nanoplates [J]. Acta Phys Chim Sin, 2012, 28(11):2511-2524. (in Chinese) [2]Wiley B, Sun Y G, Mayers B, et al. Shape-controlled synthesis of metal nanostructures: the case of silver [J]. Chemistry-A European Journal, 2005, 11: 454-463. [3]Sun Y G, Xia Y N. Triangular nanoplates of silver: Synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold [J]. Advanced Materials, 2003, 15(9): 695-699. [4]Ma X J, Kuang Y, Bai L, et al. Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation [J]. ACS Nano, 2011, 5(4): 3242-3249. [5]Sun X M, Luo D C, Liu J F, et al. Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation [J]. ACS Nano, 2010, 4(6): 3381-3389. [6]Sun X M, Tabakman S M, Seo W S, et al. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals [J]. Angewandte Chemie International Edition, 2008, 48: 939-942. [7]Fagan J A, Becker M L, Chun J, et al. Length fractionation of carbon nanotubes using centrifugation [J]. Advanced Materials, 2008, 20(9): 1609-1613. [8]Sun X M, Zaric S, Daranciang D, et al. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10nm [J]. Journal of the American Chemical Society, 2008, 130: 6551-6555. [9]Zhang C L, Luo L, Luo J, et al. A process-analysis microsystem based on density gradient centrifugation and its application in the study of the galvanic replacement mechanism of Ag nanoplates with HAuCl4[J]. Chemical Communications, 2012, 48: 7241-7243. [10]Métraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness [J]. Advanced Materials, 2005, 17(4): 412-415. [11]Yang Y, Matsubara S, Xiong L M, et al. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties [J]. The Journal of Physical Chemistry C, 2007, 111: 9095-9104. [12]Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates [J]. Nano Letters, 2002, 2(9): 1003-1007. [13]Jiang P, Tian Z Q, Zhu C N, et al. Emission-tunable near-infrared Ag2S quantum dots [J]. Chemistry of Materials, 2011, 24:3-5.