Optimization of scale-invariant feature transform (SIFT) feature extraction

YI JunKai;BIAN GaoHui;JIANG DaGuang

Journal of Beijing University of Chemical Technology ›› 2013, Vol. 40 ›› Issue (1) : 115-119.

PDF(1673 KB)
Welcome to Journal of Beijing University of Chemical Technology, Today is May 14, 2025
Email Alert  RSS
PDF(1673 KB)
Journal of Beijing University of Chemical Technology ›› 2013, Vol. 40 ›› Issue (1) : 115-119.
机电工程和信息科学

Optimization of scale-invariant feature transform (SIFT) feature extraction

  • YI JunKai;BIAN GaoHui;JIANG DaGuang
Author information +
History +

Abstract

Given the limitations imposed by the high time complexity of scale-invariant feature transform (SIFT) algorithms, an optimized SIFT feature extraction algorithm has been developed. The time complexity of the calculation steps of the SIFT feature extraction algorithm was first analyzed. Secondly, the Gaussian pyramid creation and feature point calculation process, which are the most time-consuming processes in a SIFT algorithm, were optimized. The optimized algorithm succeeded in reducing the feature point extraction time and reducing the duplicated feature matching, whilst at the same time guaranteeing the accuracy of the matching results. Finally, experiments showed that the optimized algorithm effectively reduced the time complexity.

Cite this article

Download Citations
YI JunKai;BIAN GaoHui;JIANG DaGuang. Optimization of scale-invariant feature transform (SIFT) feature extraction[J]. Journal of Beijing University of Chemical Technology, 2013, 40(1): 115-119

References

[1]Lowe D G. Object recognition from local scale-invariant features[C]International Conference on Computer Vision, Corfu, 1999: 1150-1157.
[2]李海涛, 吴培良, 孔令富. 目标主色集结合SIFT的彩色目标快速识别[J]. 计算机科学, 2009, 36(12): 257-259.
Li H T, Wu P L, Kong L F. Combining ODCS and SIFT for fast color object identification[J]. Computer Science, 2009, 36(12): 257-259. (in Chinese)
[3]林传力. 基于内容的图像检索和Sift算法的应用[D]. 上海: 上海交通大学, 2008.
Lin C L. Study on content based image retrieval and application of SIFT[D]. Shanghai: Shanghai Jiao Tong University, 2008. (in Chinese)
[4]高超, 张鑫, 王云丽, 等. 一种基于SIFT特征的航拍图像序列自动拼接方法[J]. 计算机应用, 2007, 27(11): 2769-2772.
Gao C, Zhang X, Wang Y L, et al. Automatic stitching approach of aerial image sequence on SIFT features[J]. Computer Applications, 2007, 27(11): 2769-2772. (in Chinese)
[5]Han Y B, Yin J Q, Li J P. Human face feature extraction and recognition base on SIFT[C]International Symposium on Computer Science and Computational Technology, 2008: 719-723.
[6]Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
[7]Juan L, Gwun O. A comparison of SIFT, PCA-SIFT and SURF[J]. International Journal of Image Processing, 2009, 3(4): 143-152.
[8]Bay H, Tuytelaars T, van Gool L, et al. SURF: Speeded up robust features[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
[9]Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2: 433-459.
[10]Abdel Hakim A E, Farag A. CSIFT: A SIFT descriptor with color invariant characteristics[C]Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, 2006: 1978-1983.
[11]Liu C, Yuen J, Torralba A, et al. SIFT Flow: dense correspondence across different scenes[C]European Conference on Computer Vision, 2008: 28-42.
[12]Morel J M, Yu G S. ASIFT: a new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-469.
PDF(1673 KB)

2943

Accesses

0

Citation

Detail

Sections
Recommended

/