Axisymmetric solutions for an incompressible fluid betweentwo rotating coaxial frustums

CHEN YaZhou;WANG ZiXian;XU LanXi;SHI XiaoDing

Journal of Beijing University of Chemical Technology ›› 2012, Vol. 39 ›› Issue (4) : 122-124.

PDF(913 KB)
Welcome to Journal of Beijing University of Chemical Technology, Today is July 12, 2025
Email Alert  RSS
PDF(913 KB)
Journal of Beijing University of Chemical Technology ›› 2012, Vol. 39 ›› Issue (4) : 122-124.
管理与数理科学

Axisymmetric solutions for an incompressible fluid betweentwo rotating coaxial frustums

  • CHEN YaZhou;WANG ZiXian;XU LanXi;SHI XiaoDing
Author information +
History +

Abstract

Axisymmetric solutions for an incompressible fluid between two rotating coaxial frustum with an initial value problem has been investigated. By constructing differential operators and using the energy method, the existence and uniqueness of the axisymmetric solutions of the problem has been proved.

Cite this article

Download Citations
CHEN YaZhou;WANG ZiXian;XU LanXi;SHI XiaoDing. Axisymmetric solutions for an incompressible fluid betweentwo rotating coaxial frustums[J]. Journal of Beijing University of Chemical Technology, 2012, 39(4): 122-124

References

[1]Koettig T, Moldenhauer S, Nawrodt R, et al. Two-stage pulse tube refrigerator in an entire coaxial configuration[J]. Cryogenics, 2006, 46: 888-891. 
[2]Zheng L C, Li C R, Zhang X X, et al. Exact solutions for the unsteady rotating flows of a generalized Maxwell fluid with oscillating pressure gradient between coaxial cylinders[J]. Computers and Mathematics with Applications, 2011, 62: 1105-1115. 
[3]徐小飞, 许兰喜. 两同轴旋转圆台之间不可压缩流体的数值模拟[J]. 北京化工大学学报: 自然科学版, 2008, 35(1): 108-111. 
Xu X F, Xu L X. Numerical simulation of an incompressible fluid between two rotating coaxial frustum cones[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2008, 35(1): 108-111. (in Chinese)
[4]Chen Q L, Zhang Z F. Regularity criterion of axisymmetric weak solutions to the 3D NavierStokes equations[J]. J Math Anal Appl, 2007, 331: 1384-1395.
[5]Hou T Y, Lei Z. On the partial regularity of a 3D model of the Navier-Stokes equations[J]. Commun Math Phys, 2009, 287: 589-612. 
[6]Shen G, Zhu X R. Axisymmetric solutions to the 3D Euler equations[J]. Nonlinear Analysis, 2007, 66: 1938-1948. 
[7]Lions J L. 非线性边值问题的一些解法[M]. 广州: 中山大学出版社, 1992. 
Lions J L. Some solution of nonlinear boundary value problem[M]. Guangzhou: Zhongshan University Press, 1992. (in Chinese)
PDF(913 KB)

Accesses

Citation

Detail

Sections
Recommended

/