Implicitization of parametric surfaces by means of Lagrange interpolation

ZHAO RuoChen1;YU JianPing2;SUN YongLi1

Journal of Beijing University of Chemical Technology ›› 2012, Vol. 39 ›› Issue (3) : 119-123.

PDF(918 KB)
Welcome to Journal of Beijing University of Chemical Technology, Today is July 13, 2025
Email Alert  RSS
PDF(918 KB)
Journal of Beijing University of Chemical Technology ›› 2012, Vol. 39 ›› Issue (3) : 119-123.
管理与数理科学

Implicitization of parametric surfaces by means of Lagrange interpolation

  • ZHAO RuoChen1;YU JianPing2;SUN YongLi1
Author information +
History +

Abstract

The algorithm of Dixon's matrix is first derived and then a method of the implicitization of parametric surfaces, which is based on Dixon matrix and Lagrange interpolation, is given. This method not only reduces the computational cost, but also saves the time and space cost. Further, it speeds up the implicitization of the parametric surfaces. Finally, some examples are provided to prove the accuracy and efficiency of the algorithm.

Cite this article

Download Citations
ZHAO RuoChen1;YU JianPing2;SUN YongLi1. Implicitization of parametric surfaces by means of Lagrange interpolation[J]. Journal of Beijing University of Chemical Technology, 2012, 39(3): 119-123

References

[1]吴坚, 郑康平, 任工昌. 用于几何造型的隐式曲面[J]. 西北轻工业学院学报, 2002, 20(1): 63-67. 
Wu J, Zheng K P, Ren G C. Implicit surfaces for geometric modeling[J]. Journal of Northwest University of Light Industry, 2002, 20(1): 63-67. (in Chinese)
[2]Cox D, Little J, O’Shea D. Ideals, variteties and algorithms: an introduction to computational algebraic geometry and commutative algebra[M]. New York: Springer, 1996: 112-158. 
[3]王东明. 符号计算选讲[M]. 北京: 清华大学出版社, 2003: 150-192. 
Wang D M. Selected lectures in symbolic computation [M]. Beijing: Tsinghua University Press, 2003: 150-192. (in Chinese)
[4]Sederberg T W, Zheng J M. Algebraic methods for computer aided geometric design[M]∥Farin G, Hoschek J, Kim M. Handbook of Computer Aided Geometric Design, Amesterdam: Elservier Science, 2002, 15: 363-387. 
[5]李耀辉, 冯勇, 薛继伟. 基于插值法计算Dixon结式[J]. 燕山大学学报, 2005, 29(2): 103-111. 
Li Y H, Feng Y, Xue J W. Computing Dixon resultant by interpolation algorithms[J]. Journal of Yanshan University, 2005, 29(2): 103-111. (in Chinese)
[6]Wang D M. A simple method for implicitizing rational curves and surfaces[J]. Journal of Symbolic Computation, 2004, 38(1): 899-914. 
[7]于建平, 孙永利. 多项式参数曲线隐式化的新方法[J]. 北京化工大学学报: 自然科学版, 2008, 35(3): 108-111. 
Yu J P, Sun Y L. A new method for the implicitization of polynomial parametric curves [J]. Journal of Beijing University of Chemical Technology: Natural Science, 2008, 35(3): 108-111. (in Chinese)
[8]Marco A, Martinez J J. Implicitization of rational surfaces by means of polynomial interplotation[J]. Computer Aided Geometric Design, 2002, 19: 327-344. 
[9]赵若晨, 于建平, 孙永利. 基于牛顿插值的多项式参数曲线隐式化[J]. 北京化工大学学报: 自然科学版, 2011, 38(4): 140-143. 
Zhao R C, Yu J P, Sun Y L. Implicitization of polynomial parametric curves by means of Newton interpolation[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2011, 38(4): 140-143. (in Chinese)
PDF(918 KB)

3712

Accesses

0

Citation

Detail

Sections
Recommended

/