
Invariant Ф3 for line arrangements in a plane
GUO QiuMin;XUE Fei;GUO Ling;JIANG GuangFeng
Journal of Beijing University of Chemical Technology ›› 2011, Vol. 38 ›› Issue (5) : 140-143.
Invariant Ф3 for line arrangements in a plane
It is proven that Falk’s Ф3invariant equals twice the number of circuits with length 3 for a special kind of line arrangements in a projective plane. This partially answers an open question posed by Falk.
[1]Orilik P, Terao H. Arrangements of hyperplanes[M]. Berlin: Springer-Verlag, 1992.
[2]Stanley R P. An introduction to hyperplane arrangements[M]. New York: IAS/Park City Mathematics Series, 2004.
[3]Falk M. Arrangements and cohomology[J]. Annals of Combinatorics, 1997, 1(2): 135-158.
[4]Falk M. Combinatorial and algebraic structure in orlik-solomon algebras[J]. Europ J Combinatorics, 2001, 22(3): 687-698.
[5]Falk M. On the algebra associated with a geometric lattice[J]. Adv Math, 1990, 80: 152-163.
[6]张曦,姜广峰. 超平面构形的Ф3不变量的一个算法[J].北京化工大学学报:自然科学版, 2007, 34(4): 446-448.
Zhang X, Jiang G F. An algorithm for invariant Ф3 of hyperplane arrangements[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2007, 34(4): 446-448. (in Chinese)
[7]葛婷,姜广峰. 一类图构形的Фn不变量[J]. 北京化工大学学报:自然科学版, 2009, 36(增刊): 120-123.
Ge T,Jiang G F. InvariantФn of a class of graphic arrangements[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2009, 36(suppl): 120-123. (in Chinese)
/
〈 |
|
〉 |