Complex dynamics of the modified four-variable Oregonator model

JIANG ChengYu1; LI XuDong2; CHANG Yu1

Journal of Beijing University of Chemical Technology ›› 2011, Vol. 38 ›› Issue (2) : 139-143.

PDF(980 KB)
Welcome to Journal of Beijing University of Chemical Technology, Today is April 14, 2025
Email Alert  RSS
PDF(980 KB)
Journal of Beijing University of Chemical Technology ›› 2011, Vol. 38 ›› Issue (2) : 139-143.
管理与数理科学

Complex dynamics of the modified four-variable Oregonator model

  • JIANG ChengYu1; LI XuDong2; CHANG Yu1
Author information +
History +

Abstract

We have characterized the nonlinear dynamics of the modified four-variable Oregonator model by using the center manifold theorem and bifurcation theory, including the stability and classification of equilibrium points. The results for the model show that Hopf bifurcations play very important roles in the Belousov-Zhabotinsky oscillating reaction. Numerical simulations confirmed the the theoretical analysis. 

Cite this article

Download Citations
JIANG ChengYu1; LI XuDong2; CHANG Yu1
.
Complex dynamics of the modified four-variable Oregonator model[J]. Journal of Beijing University of Chemical Technology, 2011, 38(2): 139-143

References

[1]宗春燕, 高庆宇, 王玉梅, 等. CSTR中Ferroin催化BZ反应中的倍周期振荡和混沌[J]. 中国科学:B 辑化学,2006,36(6): 449-455. 
Zong C Y, Gao Q Y, Wang Y M, et al. Double periodic oscillations and chaos of BZ reaction catalyzed by Ferroin in CSTR[J]. Science in China: Series B Chemistry,2006,36(6): 449-455. (in Chinese)
[2] Li Q S, Zhu R. Chaos to periodicity and periodicity to chaos by periodic perturbations in the BelousovZhabotinsky reaction[J]. Chaos, Solitons and Fractals,2004,19: 195-201.
[3] Gyrgyi L, Field R J. Simple models of deterministic chaos in the BelousovZhabotinskii reaction[J]. J Phys Chem, 1991, 95: 6594-6602. 
[4] Petrov V, Gáspár V, Masere J, et al . Controlling chaos in the BelousovZhabotinskii reaction[J]. Nature, 1993, 361: 240-243. 
[5] Turányi T, Gyrgyi L, Field R J. Analysis and simplification of the GTF model of the BelousovZhabotinsky reaction[J]. Nature, 1993, 97: 1931-1941. 
[6] Gyrgyi L, Field R J, Noszticzius Z, et al. Conflrmatlon of hlgh flow rate chaos in the BelousovZhabotinsky reaction[J]. J Phys Chem, 1992, 96: 1228-1233. 
[7] Wiggins S. Introduction to applied nonlinear dynamical systems and chaos[M]. Berlink: Springer, 1990:5-278.
PDF(980 KB)

2583

Accesses

0

Citation

Detail

Sections
Recommended

/