Complex dynamics of the modified four-variable Oregonator model
JIANG ChengYu1;LI XuDong2; CHANG Yu1
Author information+
1. School of Science, Beijing University of Chemical Technology, Beijing 100029; 2. Beijing Remote Sensing Institute, Beijing 100011, China
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
History+
Received
Revised
Published
2010-09-25
1900-01-01
2011-03-20
Issue Date
2011-03-20
Abstract
We have characterized the nonlinear dynamics of the modified four-variable Oregonator model by using the center manifold theorem and bifurcation theory, including the stability and classification of equilibrium points. The results for the model show that Hopf bifurcations play very important roles in the Belousov-Zhabotinsky oscillating reaction. Numerical simulations confirmed the the theoretical analysis.
.
Complex dynamics of the modified four-variable Oregonator model[J]. Journal of Beijing University of Chemical Technology, 2011, 38(2): 139-143
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]宗春燕, 高庆宇, 王玉梅, 等. CSTR中Ferroin催化BZ反应中的倍周期振荡和混沌[J]. 中国科学:B 辑化学,2006,36(6): 449-455. Zong C Y, Gao Q Y, Wang Y M, et al. Double periodic oscillations and chaos of BZ reaction catalyzed by Ferroin in CSTR[J]. Science in China: Series B Chemistry,2006,36(6): 449-455. (in Chinese) [2] Li Q S, Zhu R. Chaos to periodicity and periodicity to chaos by periodic perturbations in the BelousovZhabotinsky reaction[J]. Chaos, Solitons and Fractals,2004,19: 195-201. [3] Gyrgyi L, Field R J. Simple models of deterministic chaos in the BelousovZhabotinskii reaction[J]. J Phys Chem, 1991, 95: 6594-6602. [4] Petrov V, Gáspár V, Masere J, et al . Controlling chaos in the BelousovZhabotinskii reaction[J]. Nature, 1993, 361: 240-243. [5] Turányi T, Gyrgyi L, Field R J. Analysis and simplification of the GTF model of the BelousovZhabotinsky reaction[J]. Nature, 1993, 97: 1931-1941. [6] Gyrgyi L, Field R J, Noszticzius Z, et al. Conflrmatlon of hlgh flow rate chaos in the BelousovZhabotinsky reaction[J]. J Phys Chem, 1992, 96: 1228-1233. [7] Wiggins S. Introduction to applied nonlinear dynamical systems and chaos[M]. Berlink: Springer, 1990:5-278.