Prediction of the heat capacity and standard enthalpy of alkylbenzenes using a support vector machine

MA XiBo; YAN AiXia

Journal of Beijing University of Chemical Technology ›› 2008, Vol. 35 ›› Issue (2) : 33-37.

PDF(917 KB)
Welcome to Journal of Beijing University of Chemical Technology, Today is April 9, 2025
Email Alert  RSS
PDF(917 KB)
Journal of Beijing University of Chemical Technology ›› 2008, Vol. 35 ›› Issue (2) : 33-37.
化学与化学工程

Prediction of the heat capacity and standard enthalpy of alkylbenzenes using a support vector machine

  • MA XiBo; YAN AiXia
Author information +
History +

Abstract

Several quantitative structure-property relationship (QSPR) models of the correlation between the structure of different alkylbenzenes and their heat capacity and standard enthalpy have been constructed. A simple set of six numerical codes was used to represent each alkylbenzene structure on the basis of its molecular formula. The QSPR models were constructed using multiple linear regression, multiple nonlinear regression and support vector machine regression. The compounds were divided into a training set and a test set. The correlation coefficient R, mean abstract error (MAE) and root mean square (RMS) of each model were calculated. It was found that the support vector machine model was superior to the other two models. The support vector machine model should also be of value in predicting the physicochemical properties of other organic compounds.

Cite this article

Download Citations
MA XiBo; YAN AiXia. Prediction of the heat capacity and standard enthalpy of alkylbenzenes using a support vector machine[J]. Journal of Beijing University of Chemical Technology, 2008, 35(2): 33-37

References

[1]杨文滨, 苏明. 高湿空气在高温高压区域内的热物性计算及分析[J]. 动力工程, 2004, 24(3): 383-387. 
[2]Yang Shansheng, Lu Wencong, Chen Nianyi, et al. Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes[J]. Journal of Molecular Structure: Theochem, 2005, 719: 119-127. 
[3]黄钦, 庄燕, 乔学斌, 等. 用支持向量机建立中药有效成分聚集体的预测模型[J]. 物理化学学报, 2007,23(8):1141-1144. 
[4]瞿海斌, 刘晓宣, 程翼宇. 中药材三七提取液近红外光谱的支持向量机回归校正方法[J]. 高等学校化学学报, 2004, 25(1): 39-43. 
[5]Yan Aixia, Jiao Guimei, Hu Zhide, et al. Use of artificial neural net works to predict the gas hromatographic retention index data of alkylbenzenes on Carbonwax-20M[J]. Computer and Chemistry, 2000,24:171-179. 
[6]Yan Aixia, Hu Zhide. Linear and non-linear modeling for the investigation of gas chromatography retention indices of alkylbenzenes on Cit.A-4, SE-30 and carbowax 20M[J]. Analytica Chimica Acta, 2001, 433:45-154. 
[7]Lide R D. CRC Handbook of Chemistry and Physcs[M]. 87th Ed. Boca Raton: Taylor & Francis, 2006-2007. 
[8]马沛生. 有机化合物实验物性数据手册——含碳、氢、氧、卤部分[M]. 北京:化学工业出版社, 2006. 
[9]Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297. 
[10]Gunn S R. Support vector machines for classification and regression[R]. Southampton : University of Southampton, 1998-05-10. 
[11]Kecman V. Learning and soft computing: Support vector machines, neural networks, and fuzzy logic models[M]. Cambridge, MA: The MIT Press, 2001. 
[12]Schlkopf B, Smola A J, Williamson R C, et al. New support vector algorithms[J]. Neural Computation, 2000, 12:1207-1245. 
[13]Cristianini N, Shawe-Taylor J. 支持向量机导论[M]. 李国正, 王猛, 曾华军, 译. 北京:电子工业出版社, 2006. 
[14]王惠文. 偏最小二乘回归方法及其应用[M]. 北京:国防工业出版社, 1994. 
[15]Chang C C, Lin C J. Libsvm-2.82[CP/OL]. [2007-05-08]. http://www.csie.ntu.edu.tw/cjlin/libsvm.
PDF(917 KB)

4247

Accesses

0

Citation

Detail

Sections
Recommended

/