
Analysis and comparison of numerical algorithms for fractional calculus
CAO Jiao;LI DaZi
Journal of Beijing University of Chemical Technology ›› 2007, Vol. 34 ›› Issue (s2) : 122-125.
Analysis and comparison of numerical algorithms for fractional calculus
Two direct discretization methods for fractional order differentiation and integration are introduced, namely direct recursive discretization of the Tustin operator and direct discretization by continued fraction expansion of the Tustin transformation. Both approximate discretization methods afford stable minimum phase systems. Comparison of frequency domains demonstrates that the continued fraction expansion method is better than the recursive Tustin method and the reasons for this are discussed.
[1]薛定宇, 张晓华. 控制系统计算机辅助设计——MATLAB语言与应用[M]. 2版. 北京: 清华大学出版社, 2006.
[2]ORTIGUEIRA M D. Introduction to fractional linear systems. Part 1: Continuous-time case[J]. IEEE Proceedings on Signal Process, 2000, 147(1):62-70.
[3]AXTELL M, BISE E M. Fractional calculus applications in control systems[C]∥Proceedings of IEEE 1990 National Aerospace and Electronics conference, Dayton, OH, USA, May 21-25,1990: 563-566.
[4]CHEN Yangquan, XUE Dingyu, DOU Huifang. Fractional calculus and biomimetic control[C]∥Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, August 22-26, 2004:901-906.
[5]薛定宇,陈阳泉. 高等应用数字问题的MATLAB求解[M]. 北京:清华大学出版社.2004.
[6]郑大钟. 线性系统理论[M]. 北京: 清华大学出版社,1990.
[7]PODLUBNY I. Fractional-order systems and PIλDμ-controllers[J]. IEEE Tranctions on Automatic Control, 1999,44(1): 208-214.
[8]PODLUBNY I. Fractional differential equations[M]. New York: Academic Press, 1999.
[9]PODLUBNY I, DORCAK L, KOSTIAL I. On fractional derivatives, fractional-order dynamic systems and PIλDμ-controllers[C]∥Proceedings of the 36th Conference on Decision and Control San Diego, California USA, December, 1997: 4985-4990.
[10]VINAGRE B M, CHEN Yangquan, PETRAS I. Two direct Tustin discretization methods for fractional-order differentiator/integrator[J]. Journal of the Franklin Institute, 2003, 340: 349-362.
[11]CHEN Yangquan, MOORE K L. Discretization schemes for fractional order differentiators and integrators[J]. IEEE Transactions on Circuits and Systems, 2002, 49(3): 363-367.
/
〈 |
|
〉 |