旋转填充床运行过程重要参数预警调控模型

赵倩, 王峰, 白岩, 边靖

北京化工大学学报(自然科学版) ›› 2023, Vol. 50 ›› Issue (3) : 83-91.

PDF(2742 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月26日 星期六
Email Alert  RSS
PDF(2742 KB)
北京化工大学学报(自然科学版) ›› 2023, Vol. 50 ›› Issue (3) : 83-91. DOI: 10.13543/j.bhxbzr.2023.03.010
机电工程和信息科学

旋转填充床运行过程重要参数预警调控模型

  • 赵倩1,2, 王峰1, 白岩1, 边靖1
作者信息 +

An early warning control model for the important parameters of a rotating packed bed operation process

  • ZHAO Qian1,2, WANG Feng1, BAI Yan1, BIAN Jing1
Author information +
文章历史 +

摘要

旋转填充床是实现超重力技术的典型过程强化设备。物料黏附丝网填料会导致转子质量不平衡振动,严重影响设备传质效率和长周期运行,而控制化学反应工艺参数变化可以延缓黏附和减小振动。提出旋转填充床运行过程重要参数调控模型构建方法,通过计算流体动力学模拟,基于正交试验分析多参数变化对目标参数影响的趋势规律,获取影响效应程度排序,并确定构建影响预测模型的关键参数。通过Matlab数据拟合,构建旋转填充床运行过程重要参数预警调控模型。以旋转填充床填料持液量和气相压降两个目标参数为例,计算多参数对两目标参数的影响效应程度,拟合建立基于关键参数耦合的持液量和气相压降预警调控模型,揭示多参数变化对两目标参数的影响规律。计算预警调控误差概率,提出旋转填充床运行过程重要参数预警调控模型构建方法。所得成果的应用将有助于监测预警重要工艺参数,在发现设备异常时及时采取有效调控措施,降低振动效应和物料泄漏概率。

Abstract

A rotating packed bed is a typical process intensification device for realizing hypergravity. The material adhering to the wire mesh packing causes the rotor mass to vibrate in an unbalanced manner, which seriously affects the mass transfer efficiency and the long-term operation of the equipment. Controlling the chemical reaction process parameter changes can delay adhesion and reduce vibration. This paper proposes a method for constructing a control model for the important parameters in the operation process of the rotating packed bed. The fluid mechanics simulation method is used to study the influence of multi-parameter changes on the target parameters based on orthogonal experiments, rank the influence degree of multi-parameters on target parameters, and determine the key parameters for constructing the influence prediction model. An early warning control model of the important parameters in the operation process of the rotating packed bed was constructed through the Matlab data fitting method. The effects of multiple parameters on the two target parameters were calculated by taking two target parameters of the rotating packed bed as examples. Fitting and establishing a liquid holdup and gas phase pressure drop early warning control model based on the coupling of key parameters, revealed the influence of the two target parameters. Based on the early warning control error probability, a method for constructing an early warning control model for the important parameters in the operation process of the rotating packed bed is proposed. The results will help to monitor key process parameters, and allow timely and effective control measures to be taken when the abnormality is found, thus reducing the vibration effect and the probability of material leakage.

关键词

计算流体动力学(CFD)模拟 / 旋转填充床 / 填料持液量 / 气相压降

Key words

computational fluid dynamics (CFD) simulation / rotating packed bed / packing liquid holdup / gas-phase pressure drop

引用本文

导出引用
赵倩, 王峰, 白岩, 边靖. 旋转填充床运行过程重要参数预警调控模型[J]. 北京化工大学学报(自然科学版), 2023, 50(3): 83-91 https://doi.org/10.13543/j.bhxbzr.2023.03.010
ZHAO Qian, WANG Feng, BAI Yan, BIAN Jing. An early warning control model for the important parameters of a rotating packed bed operation process[J]. Journal of Beijing University of Chemical Technology, 2023, 50(3): 83-91 https://doi.org/10.13543/j.bhxbzr.2023.03.010

参考文献

[1] 李沃源, 毋伟, 邹海魁, 等.超重力旋转填充床用于高黏聚合物脱挥的研究进展[J]. 化工进展, 2010, 29(2): 211-216,232. LI W Y, WU W, ZOU H K, et al. Devolatilization of high viscous polymer via high gravity rotating packed bed[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 211-216,232. (in Chinese)
[2] 郭正东, 苏梦军, 刘含笑, 等. 旋转填充床基础研究及工业应用进展[J]. 化工进展, 2018, 37(4): 1335-1346. GUO Z D, SU M J, LIU H X, et al. States-of-the-arts progress on fundamental research and industrial applications of rotating packed bed[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1335-1346. (in Chinese)
[3] 刘晨民, 刘曦曦, 陈小鹏, 等. 超重力反应结晶碳化法制备球形碳酸钙[J]. 化工进展, 2021, 40(11): 6323-6331. LIU C M, LIU X X, CHEN X P, et al. Preparation of spherical calcium carbonate by high-gravity reaction crystallization carbonization[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6323-6331. (in Chinese)
[4] 曾东, 李振虎. 超重力技术的应用研究[J]. 石油化工, 2018, 47(7): 763-768. ZENG D, LI Z H. Application progress of high gravity technology[J]. Petrochemical Technology, 2018, 47(7): 763-768. (in Chinese)
[5] ZHANG L L, WU S Y, LIANG Z Z, et al. Hydrogen sulfide removal by catalytic oxidative absorption method using rotating packed bed reactor[J]. Chinese Journal of Chemical Engineering, 2017, 25(2): 175-179.
[6] 邹海魁, 初广文, 向阳,等. 超重力反应强化技术最新进展[J]. 化工学报, 2015, 66(8): 2805-2809. ZOU H K, CHU G W, XIANG Y, et al. New progress of HIGEE reaction technology[J]. CIESC Journal, 2015, 66(8): 2805-2809. (in Chinese)
[7] 邹海魁, 邵磊, 陈建峰. 超重力技术进展-从实验室到工业化[J]. 化工学报, 2006,57(8): 1810-1816. ZOU H K, SHAO L, CHEN J F. Progress of HIGEE technology-from laboratory to commercialization[J]. Journal of Chemical Industry and Engineering(China), 2006,57(8): 1810-1816. (in Chinese)
[8] 王峰, 孙思, 郭锴. 旋转填充床一次碳化法制备轻质碳酸镁[J]. 无机盐工业, 2006, 38(2): 31-33. WANG F, SUN S, GUO K. The production of light magnesium carbonate by one-time carbonation with rotating packed bed[J]. Inorganic Chemicals Industry, 2006, 38(2): 31-33. (in Chinese)
[9] 关妍. 基于超声清洗的双电磁离合式旋转填充床设计与预警研究[D]. 北京: 北京化工大学, 2019. GUAN Y. Design and early warning methods of RPB based on double electromagnetic clutch and ultrasonic cleaning[D]. Beijing: Beijing University of Chemical Technology, 2019. (in Chinese)
[10] 张正辉. 旋转填充床结构设计及不平衡控制策略[D]. 北京: 北京化工大学, 2021. ZHANG Z H. Structural design of rotating packed bed and unbalance control strategy[D]. Beijing: Beijing University of Chemical Technology, 2021. (in Chinese)
[11] ZHANG Z H, GUAN Y, ZHAO Q, et al. Early warning on mass imbalance and clean-in-place strategy for rotor of rotating packed bed[J]. IEEE Access, 2020, 8: 44503-44510.
[12] 谭丽媛, 袁希钢, KALBASSI M A. 规整填料结构对液相分布影响的计算流体力学[J]. 化工进展, 2015, 34(11): 3869-3878. TAN L Y, YUAN X G, KALBASSI M A. Effect of structured packing's structure on liquid distribution by computational fluid dynamics[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3869-3878. (in Chinese)
[13] 叶非华, 廖虎, 易国斌. 基于多孔介质模型的膜式氧合器内部流场分析[J]. 化工进展, 2020, 39(3): 898-905. YE F H, LIAO H, YI G B. Internal flow field analysis of membrane oxygenator based on porous media model[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 898-905. (in Chinese)
[14] YANG Y C, XIANG Y, LI Y G, et al. 3D CFD modelling and optimization of single-phase flow in rotating packed beds[J]. The Canadian Journal of Chemical Engineering, 2015, 93:1138-1148.
[15] 欧阳毅. 旋转填充床内黏性流体混合反应过程的CFD模拟与实验研究[D]. 北京: 北京化工大学, 2019. OUYANG Y. Study on micromixing process of vicous liquids in rotating packed bed by CFD simulation and experiment[D]. Beijing: Beijing University of Chemical Technology, 2019. (in Chinese)
[16] 孙润林, 向阳, 初广文, 等. 旋转填充床气相流场模拟与验证[J]. 北京化工大学学报(自然科学版), 2012, 39(4): 6-11. SUN R L, XIANG Y, CHU G W, et al. Computational fluid dynamics (CFD) simulation and validation of the gas flow field in a rotating packed bed[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2012, 39(4): 6-11. (in Chinese)
[17] 李蔚玲, 钟文琪, 金保昇, 等. 气液固三相浆态床流型转变特性的试验研究[J]. 工程热物理学报, 2014, 35(1): 100-103. LI W L, ZHONG W Q, JIN B S, et al. Experimental analysis of flow characteristics in a gas-liquid-solid three-phase bubble column[J]. Journal of Engineering Thermophysics, 2014, 35(1): 100-103. (in Chinese)
[18] 李昭, 王文瑞, 张佳明. 新型钾盐结晶器内部流场模拟及性能预测[J]. 北京化工大学学报(自然科学版), 2018, 45(3): 27-34. LI Z, WANG W R, ZHANG J M. Simulation of the flow field and performance prediction for a new crystallizer[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2018, 45(3): 27-34. (in Chinese)
[19] 刘玉杰. 旋转填充床内流体流动与传质的三维CFD模拟[D]. 北京: 北京化工大学, 2017. LIU Y J. Three dimensional CFD modeling of gas-liquid flow and mass transfer in rotating packed beds[D]. Beijing: Beijing University of Chemical Technology, 2017. (in Chinese)
[20] 王辰宇, 刘玉杰, 高雪颖, 等. 应用CFD方法分析球填料旋转床内气相流动特征[J]. 高校化学工程学报, 2018, 32(5): 1004-1011. WANG C Y, LIU Y J, GAO X Y, et al. CFD analysis of gas flow in a rotating ball-packed bed[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(5): 1004-1011. (in Chinese)

基金

国家自然科学基金(51775029); 中央高校基本科研业务费(JD2319); 中央高校基本科研业务费专项资金(XK2020-04); 中海油科研合作项目(ZX2022ZCTYF7612)
PDF(2742 KB)

1171

Accesses

0

Citation

Detail

段落导航
相关文章

/