酵母合成环黄芪醇的研究进展

袁瑛姿, 钟泓卉, 杨雨潼, 姚欢, 张晓玲, 王峥, 魏勇军

北京化工大学学报(自然科学版) ›› 2023, Vol. 50 ›› Issue (3) : 14-26.

PDF(4381 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月4日 星期五
Email Alert  RSS
PDF(4381 KB)
北京化工大学学报(自然科学版) ›› 2023, Vol. 50 ›› Issue (3) : 14-26. DOI: 10.13543/j.bhxbzr.2023.03.002
综述

酵母合成环黄芪醇的研究进展

  • 袁瑛姿1,2, 钟泓卉1,2, 杨雨潼1,2, 姚欢1,2, 张晓玲1,2, 王峥3, 魏勇军1,2
作者信息 +

Advances in the production of cycloastragenol using engineered yeast

  • YUAN YingZi1,2, ZHONG HongHui1,2, YANG YuTong1,2, YAO Huan1,2, ZHANG XiaoLing1,2, WANG Zheng3, WEI YongJun1,2
Author information +
文章历史 +

摘要

黄芪是一种重要的中药材,为豆科植物黄芪的干燥根,含有黄酮类、多糖类、皂苷类等多种成分。环黄芪醇主要由黄芪中的黄芪甲苷转化而成,具有抗氧化、抗衰老等多种生物活性。但是现有的环黄芪醇生产策略依赖于中药提取,难以大规模生产。合成生物学技术的快速发展为构建酵母细胞工厂用于高效生产多种植物天然产物提供了基础,也为环黄芪醇的大规模高效合成提供了解决方案。本文综述了现有环黄芪醇的制备方法,对环黄芪醇合成途径及关键酶、萜类合成代谢途径调控等进行了阐述和讨论。未来,通过表达环黄芪醇的关键合成酶基因,并设计和构建酿酒酵母细胞工厂以提高萜类合成代谢通量,有望实现环黄芪醇的酵母合成。

Abstract

Astragali radix is an important Chinese herbal medicine. It is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or A. membranaceus (Fisch.) Bge., which contains flavonoids, polysaccharides, saponins and other components. Cycloastragenol is mainly converted from astragaloside in A. radix and has many biological activities such as anti-oxidation and anti-aging. However, current production strategy of cycloastragenol relies on the extraction of traditional Chinese medicine, which is difficult to carry out on a large scale. The rapid development of synthetic biotechnology provides the basis for constructing yeast cell factories to produce a variety of plant natural products with high efficiency and gives a solution for the large-scale and efficient synthesis of cycloastragenol. The available preparation methods of cycloastragenol are reviewed. The synthesis pathway and key enzymes for cycloastragenol and the regulation of the terpenoid synthesis metabolic pathway are described and discussed. In future, it can be expected that yeast synthesis of cycloastragenol will be achieved by expressing the key synthase genes of cycloastragenol and designing and constructing a Saccharomyces cerevisiae cell factory to increase the metabolic flux of terpenoid synthesis.

关键词

环黄芪醇 / 酿酒酵母 / 微生物细胞工厂 / 氧化角鲨烯环化酶 / 细胞色素P450

Key words

cycloastragenol / Saccharomyces cerevisiae / microbial cell factory / oxidosqualene cyclase / cytochrome P450

引用本文

导出引用
袁瑛姿, 钟泓卉, 杨雨潼, 姚欢, 张晓玲, 王峥, 魏勇军. 酵母合成环黄芪醇的研究进展[J]. 北京化工大学学报(自然科学版), 2023, 50(3): 14-26 https://doi.org/10.13543/j.bhxbzr.2023.03.002
YUAN YingZi, ZHONG HongHui, YANG YuTong, YAO Huan, ZHANG XiaoLing, WANG Zheng, WEI YongJun. Advances in the production of cycloastragenol using engineered yeast[J]. Journal of Beijing University of Chemical Technology, 2023, 50(3): 14-26 https://doi.org/10.13543/j.bhxbzr.2023.03.002

参考文献

[1] 张蔷, 高文远, 满淑丽. 黄芪中有效成分药理活性的研究进展[J]. 中国中药杂志, 2012, 37(21): 3203-3207. ZHANG Q, GAO W Y, MAN S L. Chemical composition and pharmacological activities of Astragali Radix[J]. China Journal of Chinese Materia Medica, 2012, 37(21): 3203-3207. (in Chinese)
[2] DING W J, CHEN G H, DENG S H, et al. Calycosin protects against oxidative stress-induced cardiomyocyte apoptosis by activating aldehyde dehydrogenase 2[J]. Phytotherapy Research, 2023, 37(1): 35-49.
[3] 杨冰, 于桂红, 李明雨, 等. 基于“补气固表”探究黄芪黄酮组分抑制C57BL/6荷瘤小鼠肿瘤生长及免疫调节机制研究[J]. 中国中药杂志, 2019, 44(23): 5184-5190. YANG B, YU G H, LI M Y, et al. Mechanism of flavonoid components in Astragali Radix in inhibiting tumor growth and immunoregulation in C57BL/6 tumor bearing mice based on “invigorating Qi for consolidation of exterior”[J]. China Journal of Chinese Materia Medica, 2019, 44(23): 5184-5190. (in Chinese)
[4] CHEN G H, XU H L, XU T, et al. Calycosin reduces myocardial fibrosis and improves cardiac function in post-myocardial infarction mice by suppressing TGFBR1 signaling pathways[J]. Phytomedicine, 2022, 104: 154277.
[5] KONG X H, WANG F, NIU Y B, et al. A comparative study on the effect of promoting the osteogenic function of osteoblasts using isoflavones from Radix Astragalus[J]. Phytotherapy Research, 2018, 32(1): 115-124.
[6] LI W F, HU X Y, WANG S P, et al. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation[J]. International Journal of Biological Macromolecules, 2020, 145: 985-997.
[7] DONG N, LI X R, XUE C Y, et al. Astragalus polysaccharides alleviates LPS-induced inflammation via the NF-κB/MAPK signaling pathway[J]. Journal of Cellular Physiology, 2020, 235(7-8): 5525-5540.
[8] LIU T L, ZHANG M J, NIU H Y, et al. Astragalus polysaccharide from Astragalus Melittin ameliorates inflammation via suppressing the activation of TLR-4/NF-κB p65 signal pathway and protects mice from CVB3-induced virus myocarditis[J]. International Journal of Biological Macromolecules, 2019, 126: 179-186.
[9] SU H F, SHAKER S, KUANG Y, et al. Phytochemistry and cardiovascular protective effects of Huang-Qi (Astragali Radix)[J]. Medicinal Research Reviews, 2021, 41(4): 1999-2038.
[10] LI M, LI S C, DOU B K, et al. Cycloastragenol upregulates SIRT1 expression, attenuates apoptosis and suppresses neuroinflammation after brain ischemia[J]. Acta Pharmacologica Sinica, 2020, 41(8): 1025-1032.
[11] IKRAM M, JO M H, CHOE K, et al. Cycloastragenol, a triterpenoid saponin, regulates oxidative stress, neurotrophic dysfunctions, neuroinflammation and apoptotic cell death in neurodegenerative conditions[J]. Cells, 2021, 10(10): 2719.
[12] WAN Y, XU L, WANG Y X, et al. Preventive effects of astragaloside Ⅳ and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome[J]. European Journal of Pharmacology, 2018, 833: 545-554.
[13] DENG G L, ZHOU L S, WANG B L, et al. Targeting cathepsin B by cycloastragenol enhances antitumor immunity of CD8 T cells via inhibiting MHC-I degradation[J]. Journal for ImmunoTherapy of Cancer, 2022, 10(10): e004874.
[14] 张阳焕, 袁洋, 孙曼婷, 等. 环黄芪醇抗衰老药理作用的研究进展[J]. 中国细胞生物学学报, 2021, 43(10): 2078-2084. ZHANG Y H, YUAN Y, SUN M T, et al. Research progress of anti-aging pharmacological effect of cycloastragalol[J]. Chinese Journal of Cell Biology, 2021, 43(10): 2078-2084. (in Chinese)
[15] CRAVENS A, PAYNE J, SMOLKE C D. Synthetic biology strategies for microbial biosynthesis of plant natural products[J]. Nature Communications, 2019, 10(1): 2142.
[16] ZHU M, WANG C X, SUN W T, et al. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metabolic Engineering, 2018, 45: 43-50.
[17] YAN X, FAN Y, WEI W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Research, 2014, 24(6): 770-773.
[18] WANG P P, WEI Y J, FAN Y, et al. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts[J]. Metabolic Engineering, 2015, 29: 97-105.
[19] WEI W, WANG P P, WEI Y J, et al. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts[J]. Molecular Plant, 2015, 8(9): 1412-1424.
[20] MOSES T, POLLIER J, ALMAGRO L, et al. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum[J]. Proceedings of the National Academy of Sciences, 2014, 111(4): 1634-1639.
[21] ITKIN M, DAVIDOVICH-RIKANATI R, COHEN S, et al. The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside Ⅴ from Siraitia grosvenorii[J]. Proceedings of the National Academy of Sciences, 2016, 113(47): E7619-E7628.
[22] 楚治良, 王好锋, 韩静, 等. 中药单体环黄芪醇的制备方法[J]. 实用医药杂志, 2019, 36(9): 822-824. CHU Z L, WANG H F, HAN J, et al. Study on the preparation of TCM cycloastragenol[J]. Practical Journal of Medicine & Pharmacy, 2019, 36(9): 822-824. (in Chinese)
[23] FENG L M, LIN X H, HUANG F X, et al. Smith degradation, an efficient method for the preparation of cycloastragenol from astragaloside IV[J]. Fitoterapia, 2014, 95: 42-50.
[24] CHENG L Y, ZHANG H, LIANG H, et al. Enzymatic bioconversion of cycloastragenol-6-O-β-D-glucoside into cycloastragenol by a novel recombinant β-glucosidase from Phycicoccus sp. Soil748[J]. Process Biochemistry, 2020, 90: 81-88.
[25] LI Q, WU T, ZHAO L G, et al. Highly efficient biotransformation of astragaloside Ⅳ to cycloastragenol by sugar-stimulated β-glucosidase and β-xylosidase from Dictyoglomus thermophilum[J]. Journal of Microbiology and Biotechnology, 2019, 29(12): 1882-1893.
[26] CHENG L Y, ZHANG H, CUI H Y, et al. Efficient production of the anti-aging drug cycloastragenol: insight from two glycosidases by enzyme mining[J]. Applied Microbiology and Biotechnology, 2020, 104(23): 9991-10004.
[27] WANG L M, CHEN Y. Efficient biotransformation of astragaloside IV to cycloastragenol by Bacillus sp. LG-502[J]. Applied Biochemistry and Biotechnology, 2017, 183(4): 1488-1502.
[28] TAKEUCHI D M, KISHINO S, OZEKI Y, et al. Analysis of astragaloside IV metabolism to cycloastragenol in human gut microorganism, bifidobacteria, and lactic acid bacteria[J]. Bioscience, Biotechnology, and Biochemistry, 2022, 86(10): 1467-1475.
[29] LIANG J W, MAI W N, WANG J, et al. Performance and microbial communities of a novel integrated industrial-scale pulp and paper wastewater treatment plant[J]. Journal of Cleaner Production, 2021, 278: 123896.
[30] WANG J, LIANG J W, LI Y H, et al. Characterization of efficient xylanases from industrial-scale pulp and paper wastewater treatment microbiota[J]. AMB Express, 2021, 11:19.
[31] 魏勇军, 李晓琪, 戢博阳, 等. 肠道菌群与宿主关系解析及肠道菌群调控/合成研究进展[J]. 中国科学:生命科学, 2022, 52(2): 249-265. WEI Y J, LI X Q, JI B Y, et al. Recent advances on the recovery, modulation and synthetic biology of gut microbiota and hosts[J]. Scientia Sinica(Vitae), 2022, 52(2): 249-265. (in Chinese)
[32] MIAO Q, ZHANG X L, WANG Y T, et al. Characterization of novel pectinolytic enzymes derived from the efficient lignocellulose degradation microbiota[J]. Biomolecules, 2022,12(10):1388.
[33] YANG Y D, QU L B, MIJAKOVIC I, et al. Advances in the human skin microbiota and its roles in cutaneous diseases[J]. Microbial Cell Factories, 2022,21(1):176.
[34] JIAO J, GAI Q Y, FU Y J, et al. Optimization of Astragalus membranaceus hairy roots induction and culture conditions for augmentation production of astragalosides[J]. Plant Cell, Tissue and Organ Culture, 2015, 120: 1117-1130.
[35] LIU Y, ZHOU J W, HU T Y, et al. Identification and functional characterization of squalene epoxidases and oxidosqualene cyclases from Tripterygium wilfordii[J]. Plant Cell Reports, 2020, 39(3): 409-418.
[36] CHEN K, ZHANG M, XU L L, et al. Identification of oxidosqualene cyclases associated with saponin biosynthesis from Astragalus membranaceus reveals a conserved motif important for catalytic function[J]. Journal of Advanced Research, 2023,43:247-257.
[37] HUANG L F, HU Y E, HUANG R S, et al. Oxidosqualene cyclases involved in the biosynthesis of diverse triterpenes in Camellia sasanqua[J]. Journal of Agricultural and Food Chemistry, 2022, 70(26): 8075-8084.
[38] GUO S Y, YIN Y, LEI T, et al. A cycloartenol synthase from the steroidal saponin biosynthesis pathway of Paris polyphylla[J]. Journal of Asian Natural Products Research, 2021,23(4):353-362.
[39] KAWANO N, ICHINOSE K, EBIZUKA Y. Molecular cloning and functional expression of cDNAs encoding oxidosqualene cyclases from Costus speciosus[J]. Biological and Pharmaceutical Bulletin, 2002, 25(4): 477-482.
[40] GIRVAN H M, MUNRO A W. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology[J]. Current Opinion in Chemical Biology, 2016, 31: 136-145.
[41] GUENGERICH F P, MUNRO A W. Unusual cytochrome P450 enzymes and reactions[J]. Journal of Biological Chemistry, 2013, 288(24): 17065-17073.
[42] MALHOTRA K, FRANKE J. Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants[J]. Beilstein Journal of Organic Chemistry, 2022, 18: 1289-1310.
[43] HODGSON H, DE LA PEÑA R, STEPHENSON M J, et al. Identification of key enzymes responsible for protolimonoid biosynthesis in plants: opening the door to azadirachtin production[J]. Proceedings of the National Academy of Sciences, 2019, 116(34): 17096-17104.
[44] VILLARD C, MUNAKATA R, KITAJIMA S, et al. A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution[J]. New Phytologist, 2021, 231(5): 1923-1939.
[45] TAKASE S, KERA K, NAGASHIMA Y, et al. Allylic hydroxylation of triterpenoids by a plant cytochrome P450 triggers key chemical transformations that produce a variety of bitter compounds[J]. Journal of Biological Chemistry, 2019, 294(49): 18662-18673.
[46] YASUMOTO S, FUKUSHIMA E O, SEKI H, et al. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes[J]. FEBS Letters, 2016, 590(4): 533-540.
[47] HAN J Y, HWANG H S, CHOI S W, et al. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng[J]. Plant and Cell Physiology, 2012, 53(9): 1535-1545.
[48] WANG L, ZHAO S J, LIANG Y L, et al. Identification of the protopanaxatriol synthase gene CYP6H for ginsenoside biosynthesis in Panax quinquefolius[J]. Functional & Integrative Genomics, 2014, 14(3): 559-570.
[49] MIETTINEN K, POLLIER J, BUYST D, et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis[J]. Nature Communications, 2017, 8: 14153.
[50] DONG L, ALMEIDA A, POLLIER J, et al. An independent evolutionary origin for insect deterrent cucurbitacins in Iberis amara[J]. Molecular Biology and Evolution, 2021, 38(11): 4659-4673.
[51] ZHANG J, PETERS R J. Why are momilactones always associated with biosynthetic gene clusters in plants?[J]. Proceedings of the National Academy of Sciences, 2020, 117(25): 13867-13869.
[52] LI D W, MA Y S, ZHOU Y, et al. A structural and data-driven approach to engineering a plant cytochrome P450 enzyme[J]. Science China Life Sciences, 2019, 62(7): 873-882.
[53] ZHANG X P, LUO W, YAO Y Y, et al. Enhanced chemoselectivity of a plant cytochrome P450 through protein engineering of surface and catalytic residues[J]. aBIOTECH, 2021, 2(3): 215-225.
[54] TAKEMURA M, TANAKA R, MISAWA N. Pathway engineering for the production of β-amyrin and cycloartenol in Escherichia coli—a method to biosynthesize plant-derived triterpene skeletons in E. coli[J]. Applied Microbiology and Biotechnology, 2017, 101(17): 6615-6625.
[55] AJIKUMAR P K, XIAO W H, TYO K E J, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70-74.
[56] JARBOE L R, ZHANG X, WANG X, et al. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology[J]. Journal of Biomedicine and Biotechnology, 2010, 2010: 761042.
[57] KAMPRANIS S C, MAKRIS A M. Developing a yeast cell factory for the production of terpenoids[J]. Computational and Structural Biotechnology Journal, 2012,3(4): e201210006.
[58] 李冰, 张传波, 宋凯, 等. 生物合成稀有人参皂苷的研究进展[J]. 中国生物工程杂志, 2021, 41(6): 71-88. LI B, ZHANG C B, SONG K, et al. Research progress in biosynthesis of rare ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88. (in Chinese)
[59] 陈明凯, 叶丽丹, 于洪巍. 代谢改造酿酒酵母合成萜类化合物的研究进展[J]. 生物工程学报, 2021, 37(6): 2085-2104. CHEN M K, YE L D, YU H W. Advances in metabolic engineering of Saccharomyces cerevisiae for terpenoids biosynthesis[J]. Chinese Journal of Biotechnology, 2021, 37(6): 2085-2104. (in Chinese)
[60] YANG C S, LI C J, WEI W, et al. The unprecedented diversity of UGT94-family UDP-glycosyltransferases in Panax plants and their contribution to ginsenoside biosynthesis[J]. Scientific Reports, 2020,10(1):15394.
[61] PENG J J, WANG L, WANG M G, et al. Yeast synthetic biology for the production of Lycium barbarum polysaccharides[J]. Molecules, 2021,26(6):1641.
[62] WEI Y J, JI B Y, LEDESMA-AMARO R, et al. Editorial: engineering yeast to produce plant natural products[J]. Frontiers in Bioengineering and Biotechnology, 2021,9:798097.
[63] WEI Y J. Yeast synthetic biology for the production of terpenoids derived from traditional Chinese medicinal plants[M]//HARZEVILI F D. Synthetic biology of yeasts: tools and applications. Cham: Springer International Publishing, 2022: 181-205.
[64] PARAPOULI M, VASILEIADIS A, AFENDRA A S, et al. Saccharomyces cerevisiae and its industrial applications[J]. AIMS Microbiology, 2020, 6(1): 1-31.
[65] WEI Y J, GOSSING M, BERGENHOLM D, et al. Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes[J]. AMB Express, 2017,7(1):34.
[66] WEI Y J, SIEWERS V, NIELSEN J. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions[J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3577-3585.
[67] BERGENHOLM D, GOSSING M, WEI Y J, et al. Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids[J]. Biotechnology and Bioengineering, 2018, 115(4): 932-942.
[68] 石玉松, 王冬, 李荣生, 等. 创建酿酒酵母细胞工厂发酵生产人参皂苷Rh2[J]. 中国中药杂志, 2022, 47(3): 651-658. SHI Y S, WANG D, LI R S, et al. Construction of cell factories for high production of ginsenoside Rh2 in Saccharomyces cerevisiae[J]. China Journal of Chinese Materia Medica, 2022, 47(3): 651-658. (in Chinese)
[69] 陈翠玉, 庞亚如, 陈泉冰, 等. 环氧角鲨烯环化酶在三萜化合物生物合成中的进展[J]. 生物工程学报, 2022, 38(2): 443-459. CHEN C Y, PANG Y R, CHEN Q B, et al. Oxidosqualene cyclases in triterpenoids biosynthesis: a review[J]. Chinese Journal of Biotechnology, 2022, 38(2): 443-459. (in Chinese)
[70] 徐圆圆, 陈仲, 贾黎明, 等. 植物三萜皂苷生物合成途径及调控机制研究进展[J]. 中国科学:生命科学, 2021, 51(5): 525-555. XU Y Y, CHEN Z, JIA L M, et al. Advances in understanding of the biosynthetic pathway and regulatory mechanism of triterpenoid saponins in plants[J]. Scientia Sinica(Vitae), 2021, 51(5): 525-555. (in Chinese)
[71] SHIBA Y, PARADISE E M, KIRBY J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids[J]. Metabolic Engineering, 2007, 9: 160-168.
[72] 陈孚江, 周景文, 史仲平, 等. 乙酰辅酶A合成代谢对酿酒酵母生理功能的影响[J]. 微生物学报, 2010, 50(9): 1172-1179. CHEN F J, ZHOU J W, SHI Z P, et al. Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae[J]. Acta Microbiologica Sinica, 2010, 50(9): 1172-1179. (in Chinese)
[73] CHEN Y, DAVIET L, SCHALK M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J]. Metabolic Engineering, 2013, 15: 48-54.
[74] LIU W, ZHANG B, JIANG R. Improving acetyl-CoA biosynthesis in Saccharomyces cerevisiae via the overexpression of pantothenate kinase and PDH bypass[J]. Biotechnology for Biofuels, 2017,10:41.
[75] MEADOWS A L, HAWKINS K M, TSEGAYE Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016, 537(7622): 694-697.
[76] KOZAK B U, VAN ROSSUM H M, BENJAMIN K R, et al. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis[J]. Metabolic Engineering, 2014, 21: 46-59.
[77] HYNES M J, MURRAY S L. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans[J]. Eukaryotic Cell, 2010, 9(7): 1039-1048.
[78] LIAN J, SI T, NAIR N U, et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains[J]. Metabolic Engineering, 2014, 24: 139-149.
[79] VICKERS C E, WILLIAMS T C, PENG B, et al. Recent advances in synthetic biology for engineering isoprenoid production in yeast[J]. Current Opinion in Chemical Biology, 2017, 40: 47-56.
[80] LIAN J, ZHAO H. Functional reconstitution of a pyruvate dehydrogenase in the cytosol of Saccharomyces cerevisiae through lipoylation machinery engineering[J]. ACS Synthetic Biology, 2016,5(7):689-697.
[81] LV X M, WANG F, ZHOU P P, et al. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae[J]. Nature Communications, 2016, 7(1): 12851.
[82] 王雅楠, 宋育阳, 刘延琳, 等. 过量表达NADH氧化酶降低酿酒酵母乙醇合成的研究[J]. 中国食品学报, 2018, 18(4): 23-29. WANG Y N, SONG Y Y, LIU Y L, et al. Reduction of ethanol yield by NADH oxidase overexpression in Saccharomyces cerevisiae[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(4): 23-29. (in Chinese)
[83] 高扬乐, 谢梦斯, 李力. 利用不同底盘细胞开展生物合成萜类化合物的研究进展[J]. 药物生物技术, 2022, 29(1): 95-101. GAO Y L, XIE M S, LI L. Research progress in biosynthesis of terpenoids using different chassis cells[J]. Pharmaceutical Biotechnology, 2022, 29(1): 95-101. (in Chinese)
[84] 梁会超, 胡宗风, 梁兰, 等. 过表达HMGR催化结构域以优化酵母工程菌原人参二醇代谢途径的研究[J]. 药学研究, 2016, 35(8): 444-448,493. LIANG H C, HU Z F, LIANG L, et al. Optimization of the protopanoxadiol metabolic pathway by overexpression of the catalytic domain of HMGR in Saccharomyces cerevisiae[J]. Journal of Pharmaceutical Research, 2016, 35(8): 444-448,493. (in Chinese)
[85] WESTFALL P J, PITERA D J, LENIHAN J R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proceedings of the National Academy of Sciences, 2012, 109(3): E111-E118.
[86] SUN J C, XU X, XUE Z Y, et al. Functional analysis of a rice oxidosqualene cyclase through total gene synthesis[J]. Molecular Plant, 2013, 6(5): 1726-1729.
[87] 于欣水, 曾钰, 李洁, 等. MHF组蛋白折叠复合体组分编码基因MHF1过表达对重组酿酒酵母纤维素酶生产的影响[J]. 微生物学通报, 2019, 46(1): 75-83. YU X S, ZENG Y, LI J, et al. Effects of overexpression of the MHF histone fold complex component encoding gene MHF1 on production of cellulase by the recombinant Saccharomyces cerevisiae[J]. Microbiology China, 2019, 46(1): 75-83. (in Chinese)
[88] WANG M G, WEI Y J, JI B Y, et al. Advances in metabolic engineering of Saccharomyces cerevisiae for cocoa butter equivalent production[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 594081.
[89] GUAN R B, WANG M G, GUAN Z H, et al. Metabolic engineering for glycyrrhetinic acid production in Saccharomyces cerevisiae[J]. Frontiers in Bioengineering and Biotechnology, 2020,8:588255.
[90] 朱明. 酿酒酵母合成甘草次酸的途径构建与调控[D]. 天津: 天津大学, 2017. ZHU M. Construction and regulation of glycyrrhetinic acid synthetic pathway in Saccharomyces cerevisiae[D]. Tianjin: Tianjin University, 2017. (in Chinese)
[91] 曹龙辉, 李晓珺, 赵文红, 等. 麦角甾醇的研究进展[J]. 中国酿造, 2014, 33(4): 9-12. CAO L H, LI X J, ZHAO W H, et al. Research progress on ergosterol[J]. China Brewing, 2014, 33(4): 9-12. (in Chinese)
[92] TANG H T, WU Y L, DENG J L, et al. Promoter architecture and promoter engineering in Saccharomyces cerevisiae[J]. Metabolites, 2020,10(8):320.
[93] ASADOLLAHI M A, MAURY J, MØLLER K, et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis[J]. Biotechnology and Bioengineering, 2008, 99(3): 666-677.
[94] KIRBY J, ROMANINI D W, PARADISE E M, et al. Engineering triterpene production in Saccharomyces cerevisiae-β-amyrin synthase from Artemisia annua[J]. The FEBS Journal, 2008, 275(8): 1852-1859.
[95] JENSEN E D, FERREIRA R, JAKO AČU2 IUNAS T, et al. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies[J]. Microbial Cell Factories, 2017,16(1):46.
[96] 王庆华, 高丽丽, 梁会超, 等. 利用反义RNA技术抑制酿酒酵母羊毛甾醇合酶基因的表达[J]. 药学学报, 2015, 50(1): 118-122. WANG Q H, GAO L L, LIANG H C, et al. Downregulation of lanosterol synthase gene expression by antisense RNA technology in Saccharomyces cerevisiae[J]. Acta Pharmaceutica Sinica, 2015, 50(1): 118-122. (in Chinese)
[97] 郭俊琪, 王征, 张伟欣, 等. 代谢工程改造酿酒酵母提高法尼醇产量[J]. 微生物学报, 2021, 61(5): 1257-1268. GUO J Q, WANG Z, ZHANG W X, et al. Metabolic engineering of Saccharomyces cerevisiae to improve farnesol production[J]. Acta Microbiologica Sinica, 2021, 61(5): 1257-1268. (in Chinese)
[98] DAI Z B, WANG B B, LIU Y, et al. Producing aglycons of ginsenosides in bakers' yeast[J]. Scientific Reports, 2014,4:3698.
[99] JIANG Z Q, GAO H Y, LIU R, et al. Key glycosyltransferase genes of Panax notoginseng: identification and engineering yeast construction of rare ginsenosides[J]. ACS Synthetic Biology, 2022, 11(7): 2394-2404.
[100] SHI Y S, WANG D, LI R S, et al. Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides[J]. Metabolic Engineering, 2021, 67: 104-111.
[101] IGNEA C, CVETKOVIC I, LOUPASSAKI S, et al. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids[J]. Microbial Cell Factories, 2011, 10: 4.
[102] 孙明雪, 刘继栋, 堵国成, 等. 调控酿酒酵母类异戊二烯合成途径强化芳樟醇合成[J]. 生物工程学报, 2013, 29(6): 751-759. SUN M X, LIU J D, DU G C, et al. Regulation of isoprenoid pathway for enhanced production of linalool in Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2013, 29(6): 751-759. (in Chinese)

基金

国家自然科学基金(32111530179)
PDF(4381 KB)

2969

Accesses

0

Citation

Detail

段落导航
相关文章

/