一种微波等离子体反应器的优化设计

牛雁军;邵晓红;王治强

北京化工大学学报(自然科学版) ›› 2015, Vol. 42 ›› Issue (1) : 118-122.

PDF(1464 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月26日 星期六
Email Alert  RSS
PDF(1464 KB)
北京化工大学学报(自然科学版) ›› 2015, Vol. 42 ›› Issue (1) : 118-122.
机电工程和信息科学

一种微波等离子体反应器的优化设计

  • 牛雁军;邵晓红;王治强
作者信息 +

Optimal design of a microwave plasma resonator

  • NIU YanJun;SHAO XiaoHong;WANG ZhiQiang
Author information +
文章历史 +

摘要

采用HFSS软件对点火腔和反应腔进行优化仿真,得出了最优尺寸的腔体。点火腔设计为压缩弯波导形状,在谐振情况,单位微波功率可产生高达1.35×104V/m的微波场强,便于产生等离子体;反应腔设计为同轴谐振腔结构,谐振情况下S11散射系数为-54,可产生较大面积的等离子体并提高了微波能量的利用率;反应腔中的石英反应管设计为螺旋结构,可延长等离子体在反应腔中的反应时间,从而提高等离子体化学反应的转化率;通过电调反射器及环行器系统来自由调节点火腔和反应腔中微波能量的分配,实现反应器等离子体点火、加热于一体的功能。

Abstract

A new microwave plasma resonator has been designed by optimizing the sizes of the ignition chamber and reaction cavity using HFSS simulation software. The ignition chamber has a compression bending waveguide structure, and in the case of impedance matching, the highest field strength reaches 1.35×104V/m, which makes it easier for the reactant gas to discharge. The reaction cavity has a coaxial cavity structure, and the S11 scattering coefficient is -54, which can generate large volume plasma and increase the utilization of microwave energy. The quartz reaction tube has a helical structure, which increases the reaction time, and therefore, the conversion rate in the plasma chemical reaction is improved greatly. The energy partition between the ignition chamber and reaction cavity can be adjusted freely by an electric adjustable reflector and circulator, and consequently, plasma ignition and heating functionality can be achieved in the designed resonator.

引用本文

导出引用
牛雁军;邵晓红;王治强. 一种微波等离子体反应器的优化设计[J]. 北京化工大学学报(自然科学版), 2015, 42(1): 118-122
NIU YanJun;SHAO XiaoHong;WANG ZhiQiang. Optimal design of a microwave plasma resonator[J]. Journal of Beijing University of Chemical Technology, 2015, 42(1): 118-122

参考文献

[1]Zuo S S, Yaran M K, Grotjohn T A. Investigation of diamond deposition uniformity and quality for freestanding film and substrate applications[J]. Diamond and Related Materials, 2008, 17(3): 300-305. 
[2]Ahmed I, Stephen R, Wylie S R, et al. Atmospheric microwave plasma jet for material processing[J]. IEEE Transaction on Plasma Science, 2002, 30(5): 1863-1871. 
[3]Oberreuther T, Wolff C, Behr A. Volumetric plasma chemistry with carbon dioxide in an atmospheric pressure plasma using a technical scale reactor[J]. IEEE Transaction on Plasma Science, 2003, 31(1): 74-78. 
[4]Hong Y C, Uhm H S, Kim H S, et al. Decomposition of phosgene by microwave plasmatorch generated at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 958-963. 
[5]Normura S, Toyota H, Mukasa S, et al. Fuel gas production by plasma in microwave oven at atmospheric pressure[J]. Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference, 2011(3): 44-65. 
[6]刘繁, 李国伟, 马志斌, 等. 矩形压缩谐振腔内基底对电场影响的仿真模拟[J]. 武汉工程大学学报, 2013, 35(1): 51-54. 
Liu F, Li G W, Ma Z B, et al. Simulation of substrate influence on electric field in comprehensionrectangular cavity[J]. Journal of Wuhan Institute of Technology, 2013, 35(1): 51-54. (in Chinese)
[7]Kuo S P, Bivolaru D, Williams S, et al. A microwave-augmented plasma torch module[J]. Plasma Sources Sci Technol, 2006, 2: 266-275. 
[8]Jasinski M, Dors M, Mizeraczyk J. Production of hydrogen via methane conversion using microwave plasma source with CO2 or CH4 swirl[J]. The Szewalski Insitute of Fluid Flow Machinery. 2009, 85(5): 124-126. 
[9]Sekiguchi H and Mori Y. Steam plasma reforming using microwave discharge[J]. Thin Solid Films, 2003, 453: 44-48. 
[10]牛雁军, 邵晓红, 王治强. 一种同轴腔微波等离子体反应器的设计及电磁场计算[J]. 北京化工大学学报: 自然科学版, 2014, 41(1): 106-110. 
Niu Y J, Shao X H, Wang Z Q. Calculation and design of the celectromagnetic field in a coaxial resonator microwave olasmareactor[J]. Journal of Beijing University of Chemical Technology, 2014, 41(1): 106-110. (in Chinese)
[11]刘繁, 汪建华. TE103单模谐振腔的计算模拟及优化[J]. 武汉工程大学学报, 2009, 31(3): 5. 
Liu F, Wang J H. Numerical simulation and optimization of electromagnetic field of TE103 sing-mode cavity[J]. Journal of Wuhan Institute of Technology, 2009, 31(3): 5. (in Chinese)
[12]李剑浩. 混合物电导率和介电常数的研究[J]. 地球物理学报, 1996(S1): 364-370. 
Li J H. Study of the electrical comductivity and dielectric constant of mixture[J]. Chinese Journal of Geophysics, 1996(S1): 364-370. (in Chinese)

PDF(1464 KB)

2712

Accesses

0

Citation

Detail

段落导航
相关文章

/