微膨胀床反应器压降及轴向扩散特性研究

谢六磊;李争;刘辉*

北京化工大学学报(自然科学版) ›› 2013, Vol. 40 ›› Issue (4) : 1-7.

PDF(1187 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月23日 星期三
Email Alert  RSS
PDF(1187 KB)
北京化工大学学报(自然科学版) ›› 2013, Vol. 40 ›› Issue (4) : 1-7.
化学与化学工程

微膨胀床反应器压降及轴向扩散特性研究

  • 谢六磊;李争;刘辉*
作者信息 +

Axial dispersion and pressure drop of a slightly expanded bed reactor

  • XIE LiuLei;LI Zheng;LIU Hui
Author information +
文章历史 +

摘要

以多孔的球、齿球和三叶草形催化剂为填充颗粒,考察了微膨胀床反应器的床层压降及液相总的和局部的轴向扩散特性。结果表明,3种催化剂床层压降都随表观液速的增大而增大,随表观气速的增大而减小;球形催化剂的床层压降最大,三叶草形催化剂的床层压降最小。通过示踪-响应法测定示踪剂在微膨胀床反应器中的停留时间分布,求取了床层总的和局部的彼克列数Pe。结果表明,3种催化剂总的彼克列数都随表观液速的增大而增大,随表观气速的增大而减小;局部的彼克列数随着催化剂床层轴向高度的增加而减小。3种催化剂床层的总的彼克列数大小依次为:球形最大,齿球形次之,三叶草形最小。

Abstract

The total and local axial liquid dispersion, and the bed pressure drop, of a slightly expanded bed reactor have been investigated for catalyst beds packed with spherical, toothed-ball and cloverleaf catalyst particles. The values of total Peclet number and local Peclet number were determined by measuring residence time distributions using the tracer pulse-response method. The results indicate that, for all three kinds of catalysts, the values of total Peclet number increase with increasing superficial liquid velocity and decrease with increasing superficial gas velocity, and the values of local Peclet number decrease with increasing axial distance. Under the same operating conditions, the values of total Peclet number for the spheres are bigger than those for the toothed-balls, and the values of total Peclet number for the toothed-balls are bigger than those for the cloverleaf particles. The pressure drop increases with increasing superficial liquid velocity and decreases with increasing superficial gas velocity for all three catalysts. The pressure drop is largest for the spheres and lowest for cloverleaf particles.

引用本文

导出引用
谢六磊;李争;刘辉*. 微膨胀床反应器压降及轴向扩散特性研究[J]. 北京化工大学学报(自然科学版), 2013, 40(4): 1-7
XIE LiuLei;LI Zheng;LIU Hui. Axial dispersion and pressure drop of a slightly expanded bed reactor[J]. Journal of Beijing University of Chemical Technology, 2013, 40(4): 1-7

参考文献

[1]王仙体, 李文儒, 翁惠新, 等. 微膨胀床渣油加氢处理反应器的研究[J]. 化学工程, 2006, 34(9): 28-31.
Wang X T, Li W R, Weng H X, et al. Research on slight expanded-bed oil residue hydrotreating reactor[J]. Chemical Engineering (China), 2006, 34(9): 28-31. (in Chinese)
[2]王仙体, 李文儒, 翁惠新, 等. 渣油加氢微膨胀床反应器中的气液流动状态及床层膨胀率[J]. 华东理工大学学报: 自然科学版, 2006, 32(5): 530-534. 
Wang X T, Li W R, Weng H X, et al. Gas-liquid flow and bed expansion ratio in slightly expanded-bed of residue hydro treating reactor[J]. Journal of East China University of Science and Technology: Natural Science Edition, 2006, 32(5): 530-534. (in Chinese)
[3]胡长禄, 李文儒, 刘纪端, 等. 上流式微膨胀床渣油加氢反应器工艺研究[J]. 炼油设计, 2001, 31(3): 44-45. 
Hu C L, Li W R, Liu J D, et al. Technological study on residue hydro treating reactor with up-flow slightly expanded bed[J]. Petroleum Refinery Engineering, 2001, 31(3): 44-45. (in Chinese)
[4]van Gelder K B, Westerterp K R. Residence time distribution and hold-up in a concurrent upflow packed bed reactor at elevated pressure[J]. Chemical Engineering Technology, 1990, 13: 27-40. 
[5]Saroha A K, Khera R. Hydrodynamic study of fixed beds with concurrent upflow and downflow[J]. Chemical Engineering and Processing, 2006, 45: 455-460. 
[6]Iliuta I, Thyrion F C, Muntean O. Axial dispersion of liquid in gas-liquid concurrent downflow and upflow fixed-bed reactors with porous particles[J]. Chemical Engineering Research and Design, 1998, 76: 64-72. 
[7]Yang X L, Euzen J P, Wild G. Residence time distribution of the liquid in gas-liquid concurrent upflow fixed-bed reactors with porous particles[J]. Chemical Engineering Science, 1990, 45(11): 3311-3317. 
[8]Yun J X, Yao S J, Lin D Q. Variation of the local effective axial dispersion coefficient with bed height in expanded beds[J]. Chemical Engineering Journal, 2005, 109: 123-131. 
[9]Iliuta I, Thyrion F C. Flow regimes, liquid holdups and two-phase pressure drop for two-phase concurrent downflow and upflow through packed beds: air/Newtonian and non-Newtonian liquid systems[J]. Chemical Engineering Science, 1997, 52(21/22): 4045-4053. 
[10]Iliuta I, Thyrion F C, Muntean O. Hydrodynamic characteristics of two-phase flow through fixed beds: air/Newtonian and non-Newonian liquids[J]. Chemical Engineering Science, 1996, 51(22): 4987-4995. 
[11]Jena H M, Sahoo B K, Roy G K, et al. Characterization of hydrodynamic properties of a gas-liquid-solid three-phase fluidized bed with regular shape spherical glass bead particles[J]. Chemical Engineering Journal, 2008, 145: 50-56. 
[12]Jena H M, Roy G K, Meikap B C. Prediction of gas holdup in a three-phase fluidized bed from bed pressure drop measurement[J]. Chemical Engineering Research and Design, 2008, 86: 1301-1308.
PDF(1187 KB)

2330

Accesses

0

Citation

Detail

段落导航
相关文章

/