
消毒方法对钛种植体表面TiO2
The effects of sterilization method on the protein adsorption capacity of TiO2
研究了紫外线照射、高压蒸汽灭菌处理对钛表面TiO2纳米管亲水性及蛋白质吸附的影响。纯钛试件经过打磨形成光滑钛,光滑钛在20V电压下进行阳极氧化形成80~100nm的TiO2纳米管。对TiO2纳米管及光滑钛进行紫外线照射、高压蒸汽灭菌处理后测量表面接触角,然后在37℃下进行牛血清白蛋白(BSA)的吸附及释放。结果表明:紫外线照射组的TiO2纳米管接触角较小,亲水性较好;紫外组蛋白质吸附多于高压组,而高压组的蛋白质释放快于紫外组。两种消毒方法综合比较,TiO2纳米管紫外线照射优于高压蒸汽灭菌。
[1]Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J Mater Res, 2001, 16(12): 3331-3334.
[2]Oh S H, Fin nes R R, Daraio C, et al. Growth of nano scale hydroxyapatite using chemically treated titanium oxide nanotubes[J]. Biomaterials, 2005, 26(24): 4938-4943.
[3]Popat K C, Leoni L, Grimes C A, et al. Influence of engineered titania nanotubular surfaces on bone cells[J]. Biomaterials, 2007, 28(21): 3188-3197.
[4]Bjursten L M, Rasmusson L, Oh S, et al. Titanium dioxide nanotubes enhance bone bonding in vivo[J]. J Biomed Mater Res A, 2010, 92(3): 1218-1224.
[5]Mendon a G, Mendon a D B, Aragao F J, et al. Advancing dental implant surface technology From micron to nanotopography[J]. Biomaterials, 2008, 29(28): 3822-3835.
[6]Das K, Bose S, Bandyopadhyay A. TiO2 nanotubes on Ti: influence of nanoscale morphology on bone cell-materials interaction[J]. J Biomed Mater Res A, 2009, 90(1): 225-237.
[7]Yao C, Slamovich E B, Webster T J. Enhanced osteoblast functions on anodized titanium with nanotube-like structures[J]. J Biomed Mater Res A, 2008, 85(1): 157-166.
[8]Liu X, Zhao X, Li B, et al. UV-irradiation-induced bioactivity on TiO2 coatings with nanostructural surface[J]. Acta Biomater, 2008, 4(3): 544-552.
[9]Aita H, Hori N, Takeuchi M, et al. The effect of ultraviolet functionalization of titanium on integration with bone[J]. Biomaterials, 2009, 30(6): 1015-1025.
[10]Lim J Y, Shaughnessy M C, Zhou Z, et al. Surface energy effects on osteoblast spatial growth and mineralization[J]. Biomaterials, 2008, 29(12): 1776-1784.
[11]Han Y, Chen D, Sun J, et al. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings[J]. Acta Biomater, 2008, 4(5): 1518-1529.
[12]Pegueroles M, Gil F J, Planell J A, et al. The influence of blasting and sterilization on static and time-related wettability and surface energy properties of titanium surfaces[J]. Surf Coating Tech, 2008, 202(15): 3470-3479.
[13]Moura M R, Aouada F A, Favaro S L, et al. Release of BSA from porous matrices constituted of alginate Ca2+ and PNIPAAm interpenetrated networks[J]. Mater Sci Engin C, 2009, 29(8): 2319-2325.
[14]McClellan S J, Franses E I. Adsorption of bovine serum albumin at solid/aqueous interfaces[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2005, 260(1/2/3): 265-275.
[15]Oh S, Daraio C, Chen L H, et al. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes[J]. J Biomed Mater Res A, 2006, 78(1): 97-103.
/
〈 |
|
〉 |