消毒方法对钛种植体表面TiO2

北京化工大学学报(自然科学版) ›› 2013, Vol. 40 ›› Issue (1) : 93-97.

PDF(1642 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年2月19日 星期三
Email Alert  RSS
PDF(1642 KB)
北京化工大学学报(自然科学版) ›› 2013, Vol. 40 ›› Issue (1) : 93-97.
生物技术与环境工程

消毒方法对钛种植体表面TiO2

作者信息 +

The effects of sterilization method on the protein adsorption capacity of TiO2

  • SUN YanWei;WuLong;ZHANG ZhenTing;WANG Na;LI YanQiu
Author information +
文章历史 +

摘要

研究了紫外线照射、高压蒸汽灭菌处理对钛表面TiO2纳米管亲水性及蛋白质吸附的影响。纯钛试件经过打磨形成光滑钛,光滑钛在20V电压下进行阳极氧化形成80~100nm的TiO2纳米管。对TiO2纳米管及光滑钛进行紫外线照射、高压蒸汽灭菌处理后测量表面接触角,然后在37℃下进行牛血清白蛋白(BSA)的吸附及释放。结果表明:紫外线照射组的TiO2纳米管接触角较小,亲水性较好;紫外组蛋白质吸附多于高压组,而高压组的蛋白质释放快于紫外组。两种消毒方法综合比较,TiO2纳米管紫外线照射优于高压蒸汽灭菌。

Abstract

The aim of this study was to compare the effects of ultraviolent irradiation and autoclaving on the wettability and protein adsorption of TiO2 nanotubes on the surface of titanium. Pure titanium sheets were polished with SiC abrasive paper. The polished titanium sheets were anodized under a voltage of 20V, which resulted in a nanotubular topography with a tube diameter of 80-100nm on the surface of titanium (NT-Ti). The samples were then sterilized with UV irradiation or autoclaving. The results of contact angle measurements indicated that the contact angles of NT-Ti sterilized with UV irradiation were smaller than those of NT-Ti sterilized with autoclaving, showing that NT-Ti sterilized by UV irradiation was more hydrophilic than that sterilized by autoclaving. The adsorption behavior of bovine serum albumin (BSA) on the nanotube arrays was investigated at 37℃. The release experiment results suggested that protein adsorption on the UV irradiated materials was greater than that for the autoclaved materials, while protein release from the autoclaved materials was faster than that from the UV irradiated materials. Therefore it is recommended that such implants are sterilized by UV irradiation in the future.

引用本文

导出引用
消毒方法对钛种植体表面TiO2[J]. 北京化工大学学报(自然科学版), 2013, 40(1): 93-97
SUN YanWei;WuLong;ZHANG ZhenTing;WANG Na;LI YanQiu. The effects of sterilization method on the protein adsorption capacity of TiO2[J]. Journal of Beijing University of Chemical Technology, 2013, 40(1): 93-97

参考文献

[1]Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J Mater Res, 2001, 16(12): 3331-3334.
[2]Oh S H, Fin nes R R, Daraio C, et al. Growth of nano scale hydroxyapatite using chemically treated titanium oxide nanotubes[J]. Biomaterials, 2005, 26(24): 4938-4943.
[3]Popat K C, Leoni L, Grimes C A, et al. Influence of engineered titania nanotubular surfaces on bone cells[J]. Biomaterials, 2007, 28(21): 3188-3197.
[4]Bjursten L M, Rasmusson L, Oh S, et al. Titanium dioxide nanotubes enhance bone bonding in vivo[J]. J Biomed Mater Res A, 2010, 92(3): 1218-1224.
[5]Mendon a G, Mendon a D B, Aragao F J, et al. Advancing dental implant surface technology From micron to nanotopography[J]. Biomaterials, 2008, 29(28): 3822-3835.
[6]Das K, Bose S, Bandyopadhyay A. TiO2 nanotubes on Ti: influence of nanoscale morphology on bone cell-materials interaction[J]. J Biomed Mater Res A, 2009, 90(1): 225-237.
[7]Yao C, Slamovich E B, Webster T J. Enhanced osteoblast functions on anodized titanium with nanotube-like structures[J]. J Biomed Mater Res A, 2008, 85(1): 157-166.
[8]Liu X, Zhao X, Li B, et al. UV-irradiation-induced bioactivity on TiO2 coatings with nanostructural surface[J]. Acta Biomater, 2008, 4(3): 544-552.
[9]Aita H, Hori N, Takeuchi M, et al. The effect of ultraviolet functionalization of titanium on integration with bone[J]. Biomaterials, 2009, 30(6): 1015-1025.
[10]Lim J Y, Shaughnessy M C, Zhou Z, et al. Surface energy effects on osteoblast spatial growth and mineralization[J]. Biomaterials, 2008, 29(12): 1776-1784.
[11]Han Y, Chen D, Sun J, et al. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings[J]. Acta Biomater, 2008, 4(5): 1518-1529.
[12]Pegueroles M, Gil F J, Planell J A, et al. The influence of blasting and sterilization on static and time-related wettability and surface energy properties of titanium surfaces[J]. Surf Coating Tech, 2008, 202(15): 3470-3479.
[13]Moura M R, Aouada F A, Favaro S L, et al. Release of BSA from porous matrices constituted of alginate Ca2+ and PNIPAAm interpenetrated networks[J]. Mater Sci Engin C, 2009, 29(8): 2319-2325.
[14]McClellan S J, Franses E I. Adsorption of bovine serum albumin at solid/aqueous interfaces[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2005, 260(1/2/3): 265-275.
[15]Oh S, Daraio C, Chen L H, et al. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes[J]. J Biomed Mater Res A, 2006, 78(1): 97-103.

PDF(1642 KB)

Accesses

Citation

Detail

段落导航
相关文章

/