基于Ackermann公式的

彭亚为; 杜彬; 陈娟*

北京化工大学学报(自然科学版) ›› 2011, Vol. 38 ›› Issue (4) : 128-133.

PDF(970 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月5日 星期六
Email Alert  RSS
PDF(970 KB)
北京化工大学学报(自然科学版) ›› 2011, Vol. 38 ›› Issue (4) : 128-133.
机电工程和信息科学

基于Ackermann公式的

  • 彭亚为; 杜彬; 陈娟*
作者信息 +

A new sliding mode control design method based on the Ackermannformula

  • PENG YaWei; DU Bin; CHEN Juan
Author information +
文章历史 +

摘要

从滑模变结构控制的机理出发,设计了具有理想动态特性和较强鲁棒性的滑模控制器。该方法使用了Ackermann公式来设计滑模控制,从而可以使滑模控制的不连续超平面以简单的方式表达。在此基础上引入了Butterworth滤波器传递函数的极点作为系统的理想特征值,使闭环系统及滑模面达到了较理想的动态特性,并采用Sigmoid函数来取代开关函数更有效的抑制滑模控制的抖动;通过倒立摆控制的仿真实例验证了该方法的控制效果,且在系统参数不确定时,取得较快的收敛速度和较好的控制性能。所设计的控制器在系统动态过程中显示改进型Butterworth滤波器的动态特性,静态时在有限时间内到达期望的滑模面的邻域,整个系统具有较为理想的动态特性。

Abstract

Based on the mechanism of sliding mode variable control, a controller which has the desired dynamic behavior and strong robustness has been designed. The discontinuity plane for sliding mode control may be found in an explicit form by means of the Ackermann formula. It is shown that the sliding mode has the desired dynamic behavior using the pole of a Butterworth filter and that Sigmoid functions can restrain chattering of the systems. This method was employed to control an inverted pendulum system and simulations are given for when the plant contains uncertain parameters. The method has better control performance than previous methods. The controller in the dynamic process shows the particularity of the improved Butterworth filter and can quickly achieve the desired sliding mode surface during the steady state. The systems have the desired dynamic characteristics.

引用本文

导出引用
彭亚为; 杜彬; 陈娟*. 基于Ackermann公式的[J]. 北京化工大学学报(自然科学版), 2011, 38(4): 128-133
PENG YaWei; DU Bin; CHEN Juan. A new sliding mode control design method based on the Ackermannformula[J]. Journal of Beijing University of Chemical Technology, 2011, 38(4): 128-133

参考文献

[1]Wu T Z, Wang J D, Juang Y T. Decoupled integral variable structure control for MIMO systems[J]. Journal of the Franklin Institute, 2007, 344(7): 1006-1020. 
[2]Chung Y C, Wen B J, Lin Y C. Optimal fuzzy slidingmode control for bio-microfluidic manipulation[J]. Control Engineering Practice, 2007, 15(9): 1093-1105. 
[3]Han S. A closed-form solution to the discrete-time Kalman filter and its applications[J]. Systems & Control Letters, 2010, 59(12): 799-805. 
[4]Ackermann J, Utkin V. Sliding mode control design based Ackermann’s formula[J]. IEEE Transactions on Automatic Control, 1998, 43(2): 234-237. 
[5]van Vollenhoven E, Reuver H A, Somer J C. Transient response of Butterworth Filters[J]. IEEE Transactions on Circuit Theory, 1995, 25(8): 624-626. 
[6]洪健, 李钟慎. 改进的Butterworth最佳传递函数标准型[J]. 计算机技术与自动化, 2005, 24(2): 13-15. 
Hong J, Li Z S. The improved standard form of Butterworth optimum Transfer functions[J]. Computing Technology and Automation, 2005, 24(2): 13-15. (in Chinese)
[7]吕丹, 陈文灵, 张文夫, 等. 基于改进的Butterworth传递函数的高阶低通有源滤波器的设计[J]. 弹箭与制导学报, 2006, 26(1): 784-788. 
Lv D, Chen W L, Zhang W F, et al. An electrical design of high-grade low-pass filter based on the improved form of butterworth transfer function[J]. Journal of Projects, Roceks, Missiles and Guidance, 2006, 26(1): 784-788. (in Chinese)
[8]孟吉红, 徐军, 邓海波, 等. 三阶Butterworth型极点配置方法的改进[J]. 控制工程, 2007, 14(1): 70-72. 
Meng J H, Xu J, Deng H B, et al. Improvement of the three-order Butterworth pole allocation[J]. Control Engineering of China, 2007, 14(1): 70-72. (in Chinese)
[9]Chung C Y, Lin C L. A Transformed Luré Problem for sliding mode control and chattering reduction[J]. IEEE Transactions on Automatic Control, 1999, 44(3): 563-568.
[10]刘金琨, 孙富春. 滑模变结构控制理论及算法研究与进展[J]. 控制理论与应用, 2007, 24(3): 407-418. 
Liu J K, Sun F C. Research and development on theory and algorithms of sliding mode control [J]. Control Theory & Applications, 2007, 24(3): 407-418. (in Chinese)
[11]申铁龙, 梅生伟, 王宏, 等. 鲁棒控制基准设计问题: 倒立摆控制[J].控制理论与应用, 2003, 20(6): 974-975. 
Shen T L, Mei S W, Wang H, et al. Standard design of robust control: inverted pendulum system control[J]. Control Theory & Applications, 2003, 20(6): 974-975. (in Chinese)
PDF(970 KB)

4262

Accesses

0

Citation

Detail

段落导航
相关文章

/