超重力催化反应精馏技术合成乙酸正丁酯的研究

史琴; 张鹏远* ;初广文; 陈建峰

北京化工大学学报(自然科学版) ›› 2011, Vol. 38 ›› Issue (1) : 5-9.

PDF(905 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月7日 星期一
Email Alert  RSS
PDF(905 KB)
北京化工大学学报(自然科学版) ›› 2011, Vol. 38 ›› Issue (1) : 5-9.
化学与化学工程

超重力催化反应精馏技术合成乙酸正丁酯的研究

  • 史琴; 张鹏远* ;初广文; 陈建峰
作者信息 +

A new high gravity catalytic reactive distillation process for n-butyl acetate synthesis

  • SHI Qin; ZHANG PengYuan; CHU GuangWen; CHEN JianFeng
Author information +
文章历史 +

摘要

首次以超重力旋转床(RPB)代替反应精馏塔进行催化反应精馏合成乙酸正丁酯的实验研究,以评估超重力技术在反应精馏领域应用的可行性和优劣性。在本研究中心自主设计的新型RPB中,首次用固体酸催化剂制成旋转床填料置于RPB内腔,填充密度为336kg/m3,乙酸和正丁醇为原料,在RPB中同时进行反应和分离过程。实验中主要考察了旋转床的转子转速对催化精馏效果的影响。结果表明,在转速为700~800r/min时反应的效果最佳,乙酸转化率达88%以上。同时设计催化精馏对比实验,在基本条件相同情况下,催化精馏实验的乙酸转化率为60%,远低于RPB实验,所得产品纯度相差20%以上。因此,超重力条件有利于提高催化剂催化效率。

Abstract

The synthesis of n-butyl acetate has been carried out for the first time in a novel rotating packed bed (RPB) in order to evaluate the feasibility and applicability of high gravity technology in reactive distillation. The n-butyl acetate was synthesized by using a strong acid cation exchange resin as the catalyst and acetic acid and n-butanol as reactants. The catalyst was packed into the RPB with a density of 336kg/m3, and the processes of reaction and distillation were carried out simultaneously. The effect of varying the RPB rotation speed was investigated; the optimal rotation speed was found to be 700-800r/min, giving a conversion of acetic acid of over 88%. When conventional catalytic reactive distillation was carried out with the same proportion of catalyst, the conversion of acetic acid was only 60%, which is significantly worse than in the RPB experiment. The results indicate that high gravity technology can significantly enhance catalyst efficiency in the reactive distillation field.

引用本文

导出引用
史琴; 张鹏远* ;初广文; 陈建峰. 超重力催化反应精馏技术合成乙酸正丁酯的研究[J]. 北京化工大学学报(自然科学版), 2011, 38(1): 5-9
SHI Qin; ZHANG PengYuan; CHU GuangWen; CHEN JianFeng. A new high gravity catalytic reactive distillation process for n-butyl acetate synthesis[J]. Journal of Beijing University of Chemical Technology, 2011, 38(1): 5-9

参考文献

[1]盖旭东, 汪展文, 金涌. 催化精馏塔通用数学模型及其求解方法[J]. 化工学报, 1998, 49(5): 542-548. 
Gai X D, Wang Z W, Jin Y. General mathematical model and its solution for catalytic distillation columns[J]. Journal of Chemical Industry and Engineering(China), 1998, 49(5): 542-548. (in Chinese)
[2]EstradaVillagranaA D, Quiroz Sosa G B, JimenezAlarcon M L, et al. Comparison between a conventional process and reactive distillation for naphtha hydrodesulfurization[J]. Chemical Engineering and Processing, 2006, 45: 1036-1040. 
[3]Granados Aguilar A S, Viveros Garcia T, PerezCisneros E S. Thermo
dynamic analysis of a reactive distillation process for deep hydrodesulfurization of diesel: effect of the solvent and operating conditions[J]. Chemical Engin
eering Journal, 2008, 143: 210-219. 
[4]张澍源. 连续反应精馏技术及其应用[J]. 现代化工, 1990, 10(4): 51-54. 
Zhang S Y. Continuous reactionrectification technique and its applications[J]. Modern Chemical Industry, 1990, 10(4): 51-54. (in Chinese)
[5]陈进富, 李秀花. 分离过程中的化学效应[J]. 石油与天然气化工, 1994,23(2): 93-99. Chen J F, Li X H. The chemical effect of separation process[J]. Chemical Engineering of Oil and Gas, 1994, 23(2): 93-99. (in Chinese)

[6]杨志强, 金东元, 陶建伟, 等. 催化精馏制备乙酸正丁酯[J]. 化学世界,2006, 9: 552-554. 
Yang Z Q, Jin D Y, Tao J W, et al. Synthesis of n-butyl acetate by catalytic rectification[J]. Chemical World, 2006, 9: 552-554. (in Chinese)
[7]刘雪暖, 李玉秋. 反应精馏技术的研究现状及其应用[J]. 化学工业与工程. 2000, 17(3): 164-168. 
Liu X N, Li Y Q. Research actualities and application of reactive distillation technique[J]. Chemical Industry and Engineering, 2000, 17(3): 164-168. (in Chinese)
[8]Mujal S, Dudukkovic M P, Plaghat R. Mass-transfer in rotating packed beds. Development of gas-liquid and liquid-solid mass-transfer correlations[J]. Chem Eng Sic, 1989, 44(10): 2245-2256. 
[9]陈建峰. 超重力技术及应用: 新一代反应与分离技术[M]. 北京: 化学工业出版社, 2002. Chen J F. High gravity technology and application: novel reactive and separation
technology[M]. Beijing: Chemical Industry Press, 2002. (in Chinese)
[10]何清玉, 郭锴, 赵柄国, 等. 超重力法制备超细二氧化硅及影响因素的研究[J]. 北京化工大学学报: 自然科学版, 2006, 33(1): 16-19. 
He Q Y, Guo K, Zhao B G, et al. Preparation of ultrafine silicon dioxide by high
gravity technical and its influential factors[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2006, 33(1): 16-19. (in Chinese)
[11]李振昊, 乐园, 郭奋, 等. 纳米二氧化锡粉体的超重力-水热法制备与表征[J]. 北京化工大学学报: 自然科学版, 2007, 34(4): 354-357. 
Li Z H, Le Y, Guo F, et al. Synthesis and characterization of nanosized tin oxide powder by highgravity & hydrothermal synthesis[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2007, 34(4): 354-357. (in Chinese)
[12]Kelleher T, Fair J R. Distillation studies in a high gravity contactor[J]. Ind Eng Chem Res, 1996,35: 4646-4655. 
[13]陈建峰, 高鑫, 初广文, 等. 一种多级逆流式超重力旋转床装置: 中国, 200920247008.2[P]. 2009-11-06. 
Chen J F, Gao X, Chu G W, et al. A novel multi-stage counter current rotating
packed bed: CN, 200920247008.2[P]. 2009-11-06. (in Chinese)

PDF(905 KB)

3283

Accesses

0

Citation

Detail

段落导航
相关文章

/