微通道反应器内纳米头孢呋辛酯制备工艺优化

张乾霞; 娄金婷; 周月; 段永鸿; 王洁欣*

北京化工大学学报(自然科学版) ›› 2011, Vol. 38 ›› Issue (1) : 15-20.

PDF(2099 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年5月15日 星期四
Email Alert  RSS
PDF(2099 KB)
北京化工大学学报(自然科学版) ›› 2011, Vol. 38 ›› Issue (1) : 15-20.
化学与化学工程

微通道反应器内纳米头孢呋辛酯制备工艺优化

  • 张乾霞; 娄金婷; 周月; 段永鸿; 王洁欣*
作者信息 +

Optimization of the preparation of cefuroxime axetil nanoparticles in a microchannel by orthogonal tests

  • ZHANG QianXia; LOU JinTing; ZHOU Yue; DUAN YongHong; WANG JieXin
Author information +
文章历史 +

摘要

在Y型微通道反应器中,采用反溶剂沉淀法制备头孢呋辛酯纳米颗粒。通过正交实验,系统研究药物溶液质量浓度、沉淀温度、溶剂流量和反溶剂流量等因素对产物粒径的影响。得到的适宜制备工艺条件为:药物溶液质量浓度0.08g/mL、沉淀温度5℃、溶剂流量3mL/min,以及反溶剂流量80mL/min,制备出了粒径为260~340nm,且粒径分布窄的纳米颗粒。实验还进一步利用扫描电镜、X射线衍射、红外光谱分析和体外溶出实验对原料药及产品性质进行表征,结果表明:微粉化产品为无定形,溶出度明显优于原料药。

Abstract

Nanosized cefuroxime axetil (CFA) particles have been prepared by using an antisolvent precipitation method in a Y-junction microchannel. The effects of the CFA concentration, precipitation temperature, CFA solution flow rate and antisolvent flow rate on the particle size were investigated by orthogonal tests, and the following optimum conditions were obtained: a CFA solution mass concentration of 0.08g/mL, a precipitation temperature of 5℃, a CFA solution flow rate of 3mL/min and an antisolvent flow rate of 80mL/min. Under these conditions, CFA nanoparticles with an average size of 260-340nm and narrow particle size di-stribution were obtained. The crude drug and the as prepared nanosized product were characterized by SEM, XRD, FT-IR and dissolution tests. The results indicated that as prepared CFA nanoparticles were amorphous, and displayed significantly enhanced dissolution properties compared to the crude CFA.

引用本文

导出引用
张乾霞; 娄金婷; 周月; 段永鸿; 王洁欣*. 微通道反应器内纳米头孢呋辛酯制备工艺优化[J]. 北京化工大学学报(自然科学版), 2011, 38(1): 15-20
ZHANG QianXia; LOU JinTing; ZHOU Yue; DUAN YongHong; WANG JieXin. Optimization of the preparation of cefuroxime axetil nanoparticles in a microchannel by orthogonal tests[J]. Journal of Beijing University of Chemical Technology, 2011, 38(1): 15-20

参考文献

[1]平其能. 纳米药物和纳米载体系统[J]. 中国新药杂志, 2002, 11(1): 42-46.
Ping Q N. Nano-medicines and nano-carrier system[J]. Chinese Journal of New
Drugs, 2002, 11(1): 42-46. (in Chinese)
[2]Won D, Kim M, Lee S, et al. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical antisolvent precipitation process[J]. International Journal of Pharmaceutics,2005, 301(1/2): 199-208.[3]ZhongJ, Shen Z G, Yang Y, et al. Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment[J]. International Journal of Pharmaceutics, 2005, 301(1/2): 286-293.
[4]Kim J, Kim M, Park H, et al. Physicochemical properties and oral bioa
vailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS
process[J]. International Journal of Pharmaceutics, 2008, 359(1/2): 211-219.[5]WangZ, Chen J F, Le Y, et al. Preparation of ultrafine beclomethasone dipropionate drug powder by antisolvent precipitation[J]. Industrial & Engineering Chemistry Research, 2007, 46(14): 4839-4845.
[6]Wagner J, Khler J M. Continuous synthesis of gold nanoparticles in a microreactor[J]. Nano Letters, 2005, 4(5): 685-691.
[7]国家药典委员会. 中华人民共和国药典(二部)[M]. 北京: 化学工业出版社, 2005: 291.
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China: Chemical Industry Press, 2005: 291. (in Chinese)
[8]ZhangJ Y, Shen Z G, Zhong J, et al. Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfacta
nts[J]. International Journal of Pharmaceutics, 2006, 323(1): 153-160.
[9]ViolantoM R, Fishcher H W. Method formaking uniformly sized particles from water-insoluble organic compounds: US, 4826689[P]. 1989-05-02.
[10]马静, 王玉红, 王丹梅, 等. 旋转填充床中反溶剂重结晶法制备超细硫酸沙丁胺醇实验研究[J]. 材料科学与工程学报, 2004, 22(1): 74-77.
Ma J, Wang Y H, Wang D M, et al. Preparation of particles of ultra-fine salbuta
mol sulfate by anti-solvent re-crystallization in a rotating packed bed[J].
Journal of Matererial Science Engineering, 2004, 22(1): 74-77. (in Chinese)
[11]ZhaoH, Wang J X, Wang Q A, et al. Controlled liquid antisolvent precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel reactor[J]. Industrial & Engineering Chemistry Research, 2007, 46(24): 8229-8235.
[12]KarnikR, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles[J]. Nano Letters, 2008, 8(9): 2906-2912.
[13]Kim M, Jin S, Kim J, et al. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical
antisolvent (SAS) process[J]. European Journal of Pharmaceutics and Biopharm
aceutics, 2008, 69(2): 454-465.
[14]龙涛, 田熙科, 杨超, 等. 超细阿奇霉素的制备及表征[J]. 化工进展, 2005, 24(7): 763-766.
Long T, Tian X K, Yang C, et al. Preparation and characterization of ultra-fine
Azihromycin[J]. Chemical Industry and Engineering Progress, 2005, 24(7): 763-766. (in Chinese)

PDF(2099 KB)

3197

Accesses

0

Citation

Detail

段落导航
相关文章

/