利用全聚合物微流体反应器,在紫外光照射下制备了金纳米粒子。采用紫外-可见吸收光谱、激光粒度分析仪、高分辨透射电镜等对柠檬酸钠-氯金酸微流体光化学反应体系进行了表征,并考察了注射泵的流速、柠檬酸钠与氯金酸的浓度比、紫外辐射强度对金纳米粒子产率和粒径大小的影响。结果表明,得到的金纳米粒子最小粒径约20nm;金纳米粒子的产率随注射泵流速的增大而上升,但是随柠檬酸钠与氯金酸浓度比的增大和紫外辐射强度的增强而减弱;金纳米粒子的粒径随注射泵流速的增大和紫外辐射强度的增强而减小,但是在柠檬酸钠与氯金酸浓度比小于16时,粒径变化不大,当柠檬酸钠与氯金酸浓度比大于16时,粒径迅速增大。
Abstract
Gold nanoparticles have been synthesised in a complete polymeric microfluidic reactor under UV irradiation. The dispersions of gold nanoparticles were prepared by photoreaction of sodium citrate with chloroauric acid in aqueous solution and were characterised by UV-Vis absorption spectroscopy, laser particle size analysis and high-resolution transmission electron microscopy (HR-TEM). The effects of various factors, including the flow rates of reactants, the concentration ratio csodium citrate/cchloroauric acid and UV light intensity, on UV-Vis absorption intensity and diameters of the gold nanoparticles were investigated. The smallest gold nanoparticles obtained had diameters of 20nm. The yield of gold nanoparticles increased as the flow rates increased, but decreased as csodium citrate/cchloroauric acid increased and as the UV light intensity increased. The diameter of the gold nanoparticles decreased as flow rates increased and as UV light intensity increased. At low csodium citrate/cchloroauric acid(<16), the size of the nanoparticles was essentially independent of concentration ratio. However, at higher csodium citrate/cchloroauric acid(>16), the diameters of the resulting gold nanoparticles increased with increasing concentration ratio csodium citrate/cchloroauric acid.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Hussain I, Graham S, Wang Z X, et al. Size-controlled synthesis of nearmonodisperse gold nanoparticles in the 1-4nm range using polymeric stabilizers[J]. Journal of the American Chemical Society, 2005, 127(47): 16398-16399.
[2]Link S, El-Sayed M A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nano-dots and nano-rods[J]. Journal Physical Chemistry B, 1999, 103(40): 8410-8426.
[3]Mohamed M B, Volkov V, Link S, et al. The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal[J]. Chemical Physics Letters, 2000, 317(6): 517-523.
[4]Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nano-technology[J]. Chemical Reviews, 2004, 104 (1): 293-346.
[5]张聪惠, 兰新哲, 刘江. 纳米金溶胶制备研究[J].有色金属, 2002, 54(增刊): 62-63.
Zhang C H, Lan X Z, Liu J. Preparation of gold colloidal sols[J]. Nonferrous Metals, 2002, 54(suppl): 62-63.(in Chinese)
[6]Brown K R, Natan M J. Hydtoxylamine seeding of colloidal au nanoparticles in solution and on surface[J]. Langmuir, 1998, 14(4): 726-728.
[7]吴泓橙, 董守安, 董颖男,等. 金纳米粒子的阳光光化学合成和晶种媒介生长[J]. 高等学校化学学报, 2007, 28(1): 10-15.
Wu H C, Dong S A, Dong Y N, et al. Photochemical synthesis and the seeding-mediated growth of gold nanoparticles under the sunlight radiation[J]. Chemical Journal of Chinese Universities, 2007, 28(1): 10-15. (in Chinese)
[8]刘庆业,覃爱苗,蒋治,等. 聚乙二醇光化学法制备金纳米微粒及共振散射光谱研究[J].光谱学与光谱分析,2007, 25(11): 1857-1860.
Liu Q Y, Tan A M, Jiang Z, et al. Photochemical preparation of au nanoparticles with polyethyelene glycol and its resonance scattering spectral study[J]. Spectroscopy and Spectral Analysis, 2007, 25(11): 1857-1860. (in Chinese)
[9]Wagner J, Khler J M. Continuous synthesis of gold nanoparticles in a microreactor[J]. Nano Letters, 2005, 5(4): 685-691.
[10]Shalom D, Wootton R C R, Winkle R F, et al. Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor[J]. Materials Letters, 2007, 61(4/5): 1146-1150.
[11]Tsunoyama H, Ichikuni N, Tsukuda T. Microfluidic synthesis and catalytic application of PVP-stabilized, #1 nm gold clusters[J]. Langmuir, 2008, 24(20): 11327-11330.
[12]Yang P, Deng J Y, Yang W T. Confined photo-catalytic oxidation: A fast surface hydrophilic modification method for polymeric materials[J]. Polymer, 2003, 44(23): 7157-7164.
[13]Yang P, Xie J Y, Yang W T. A simple method to fabricate a conductive polymer micropattern on an organic polymer substrate[J] . Macromolecular Rapid Communications, 2006, 27(6): 418-423.
[14]Zhao H C, Yang P, Deng J P, et al. Fabrication of a molecular-level multilayer film on organic polymer surfaces via chemical bonding assembly[J]. Langmuir, 2007, 23 (4): 1810-1814.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}