采用水热合成法制备了具有CHA骨架结构的SAPO-34和MeAPSO-34(Me=Ni、Zn、Fe、Cu和Ni-Zn)分子筛。以甲醇裂解制取低碳烯烃(MTO)为模型反应,采用固定床反应装置,对所制备的分子筛进行了催化性能评价。结果表明,所制备的MeAPSO-34分子筛具有比SAPO-34分子筛更高的乙烯选择性和乙烯与丙烯总选择性,且Ni-Zn双金属改性比单金属改性更有利于乙烯与丙烯总选择性的提高,但金属离子的添加会导致丙烯选择性的降低。与SAPO-34相比,单金属Ni的加入可使乙烯的选择性增加7.7%(由SAPO-34的40.7%增加至NiAPSO-34的48.4%),乙烯与丙烯总选择性增加2.5%;而双金属Ni-Zn的加入可使乙烯的选择性增加6.5%,乙烯与丙烯总选择性增加3.2%。
Abstract
SAPO-34 and MeAPSO-34 (Me=Ni, Zn, Fe, Cu or Ni-Zn) zeolites have been synthesized by the hydrothermal method. The catalytic performance of these zeolites was experimentally evaluated taking methanol to olefins (MTO) as a model reaction in a fixed-bed reactor. The results showed that the MeAPSO-34 (Me=Ni, Zn, Fe, or Ni-Zn) zeolites prepared by adding metal ions during the synthesis of SAPO-34 had a higher selectivity for ethylene and higher total selectivity for ethylene and propylene than SAPO-34 zeolite. The total selectivity for ethylene and propylene was higher for Ni-ZnAPSO-34 than for other MeAPSO-34 (Me=Ni, Zn, Fe, Cu) and it was noteworthy that adding metal ions led to a decrease in the propylene selectivity. The NiAPSO-34 gave an increase in ethylene selectivity of 7.7% (from 40.7% over SAPO
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]王红秋. 我国乙烯工业的发展环境分析[J]. 国际石油经济, 2008, 16(2): 38-42.
Wang H Q. Development environment analysis of Chinese ethylene industry [J]. International Petroleum Economics, 2008, 16(2): 38-42. (in Chinese)
[2]刘红星, 谢在库, 张成芳, 等. SAPO-34分子筛研究新进展[J]. 工业催化, 2002, 10(4): 49-54.
Liu H X, Xie Z K, Zhang C F, et al. Latest researches in SAPO-34 molecular sieve [J]. Industrial Catalysis, 2002, 10(4): 49-54. (in Chinese)
[3]付宗燕, 王广勤. 甲醇制烯烃技术及进展. 石油化工技术与经济, 2009, 25(1): 59-62. Fu Z Y, Wang G Q. Methanol-to-olefin (MTO) technologies and its advance [J].Technology & Economics in Petrochemicals, 2009, 25(1): 59-62. (in Chinese
[4] 柯丽, 冯静, 张明森. 甲醇转化制烯烃技术的新进展[J]. 石油化工, 2006, 35(3): 205-211.
Ke L, Feng J, Zhang M S. Advances in catalytic conversion process of methanol to light olefins[J]. Petrochemical Technology, 2006, 35(3): 205-211. (in Chinese)
[5]Niekerk M J V, Fletcher J C Q, OConnor C T. Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34 [J]. Applied Catalysis A: General, 1996, 138(1): 135-145.
[6]Kang M. Methanol conversion on metalincorporated SAPO-34s (MeAPSO-34s)[J]. Journal of Molecular Catalysis A: Chemical, 2000, 160 (2): 437-444.
[7]何长青, 刘中民, 杨立新, 等. CoAPSO-34分子筛的合成与性能[J]. 催化学报, 1996, 17(4): 291-295.
He C Q, Liu Z M, Yang L X, et al. Investigation on the synthesis and properties of molecular sieve CoAPSO-34 [J]. Chinese Journal of Catalysis, 1996, 17(4): 291-295. (in Chinese)
[8]Dubois D R, Obrzut D L, Liu J, et al. Conversion of methanol to olefins over cobalt-, manganese-and nickel-incorporated SAPO-34 molecular sieves [J]. Fuel Processing Technology, 2003, 83(1/2/3): 203-218.
[9]Lee Y J, Baek S C, Jun K W. Methanol conversion on SAPO-34 catalysts prepared by mixed template method [J]. Applied Catalysis A: General, 2007, 329: 130-136.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}