在阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)和阴离子表面活性剂十二烷基硫酸钠(SDS)存在的条件下,以过硫酸铵(APS)为氧化剂, 15℃下氧化聚合吡咯得到了具有高结
晶度的规整片状结构聚吡咯。研究了体系中表面活性剂浓度对所得聚吡咯形貌的影响,发现当CTAB,SDS,Py单体浓度分别为0.01,0.01,0.03mol/L时所得片状结构产物较规整。初步探讨了具有高结晶度片状结构聚吡咯的形成机理:两种表面活性剂形成CTAB-SDS双胶束,Py单体以其为模板氧化聚合得到了片状结构的聚吡咯。
Abstract
Highly crystalline uniform polypyrrole (PPy) sheets have been synthesized by chemical oxidative polymerization of pyrrole (Py) at about 15℃, using ammonium persulfate ((NH4)2S2O8) as oxidant, and cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) as surfactants. The influence of varying the concentrations of CTAB and SDS on the morphologies of the PPy has been systematically investigated. The results show that highly crystalline uniform PPy sheets can be obtained with CTAB, SDS, and Py concentrations of 0.01, 0.01, and 0.03mol/L, respectively. A plausible mechanism for formation of the highly crystalline PPy sheets is proposed involving CTAB-SDS micelles as a dual-template.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Alivisatios A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.
[2]Sun S, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000, 287(5460): 1989-1992.
[3]Tran H D, Shin K, Hong W G, et al. A Template-free route to polypyrrole nanofibers[J]. Macromolecular Rapid Communication, 2007, 28(24): 2289-2293.
[4]Uemura T, Kadowaki Y, Kitagawa S, et al. Template synthesis of porous
polypyrrole in 3D coordination nanochannels[J]. Chemistry of Materials, 2009,
21(18): 4096-4098.
[5]Zhang X, Zhang J, Liu Z, et al. Inorganic/organic mesostructure directed synthesis of wire/ribbonlike polypyrrole nanostructures[J]. Chemical Communications, 2004, 4(16): 1852-1853.
[6]Zhang X, Zhang J, Song W, et al. Controllable synthesis of conducting
polypyrrole nanostructures[J]. The Journal of Physical Chemistry B, 2006, 110
(3): 1158-1165.
[7]Wu A, Kolla H, Manohar S K. Chemical synthesis of highly conducting polypyrrole nanofiber film[J].Macromolecules, 2005, 38(19): 7873-7875.
[8]Zhong W, Liu S, Chen X, et al. High-yield synthesis of superhydrophilic polypyrrole nanowire networks[J]. Macromolecules, 2006, 39(9): 3224-3230.
[9]Taguchi A, Smatt J H, Linden M. Carbon monoliths possessing a hierarchical fully interconnected porosity[J]. Advanced Materials, 2003, 15(14): 1209-1211.
[10]Gu X, Li C, Liu X, et al. Synthesis of nanosized multilayered silica vesicles with high hydrothermal stability[J]. The Journal of Physical Chemistry C, 2009, 113(16): 6472-6479.
[11]Shen J G C. Synthetic macroporous silicas with multilamellar structure[J]. The Journal of Physical Chemistry B, 2004, 108(1): 44-51.
[12]Antony M J, Jayakannan M. Amphiphilic azobenzenesulfonic acid anionic surfactant for water-soluble, ordered, and luminescent polypyrrole nanospheres[J]. The Journal of Physical Chemistry B, 2007, 111(44): 12772-12780.
[13]Wan M X, Liu J. Polypyrrole doped with 1,5-naphthalenedisulfonic acid[J]. Synthetic Metals, 2001, 124(2/3): 317-321.
[14]Douliez J P. SelfAssembly of Hollow Cones in a Bola-amphiphile/Hexadiamine SaltSolution[J]. Journal of the American Chemical Society, 2005, 127(45): 15694-15695.
[15]Lun G W, Li C, Shi G Q. Polypyrole micro-and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid[J]. Polymer, 2006, 47(6): 1778-1784.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}