均相核化率数学模型的改进研究

李旭林;何勇灵

北京化工大学学报(自然科学版) ›› 2008, Vol. 35 ›› Issue (4) : 29-33.

PDF(934 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月24日 星期四
Email Alert  RSS
PDF(934 KB)
北京化工大学学报(自然科学版) ›› 2008, Vol. 35 ›› Issue (4) : 29-33.
化学与化学工程

均相核化率数学模型的改进研究

  • 李旭林;何勇灵
作者信息 +

A revised mathematical model of the homogeneous nucleation rate

  • LI XuLin; HE YongLing

Author information +
文章历史 +

摘要

针对均相核化率求解中存在对表面自由能数值估计过高和对核化临界功估算过大使核化率数值过低等问题,本文通过理论推导对表面自由能数值进行了定量修正,并提出了核化立方体微团的方法。在提出的核化立方体微团方法中,本文认为能量达到临界功的单个分子并不会立即引发核化,而是只有当形成一个立方体微团的所有分子总能量达到临界功时相变才会发生。本文根据改进的表面自由能模型和核化立方体微团的假设对均相核化率数学模型进行了改进,并利用改进的核化率数学模型对水在42℃至300℃下的核化率进行了求解。研究结果表明,与传统的均相核化率数学模型相比,改进的核化率数学模型能较好的用于求解均质相变条件下的核化率。

Abstract

Since the surface tension value under a plane surface is too high and the calculated critical work to trigger nucleation is too low, the surface tension value under a concave surface has been quantitatively revised based on theoretical deductions and an assumption of a cubic molecular group. On the basis of this assumption, it is shown that nucleation will occur only if energy of all the molecules in the cubic group is larger than the nucleation barrier. The new model has been used to solve the nucleation rate in the temperature range 42 to 300℃ and has been validated; thus the model can be used to solve for the homogeneous nucleation rate. 

引用本文

导出引用
李旭林;何勇灵. 均相核化率数学模型的改进研究[J]. 北京化工大学学报(自然科学版), 2008, 35(4): 29-33

LI XuLin; HE YongLing

.
A revised mathematical model of the homogeneous nucleation rate[J]. Journal of Beijing University of Chemical Technology, 2008, 35(4): 29-33

参考文献

[1]张福田. 分子界面化学基础[M]. 上海: 上海科学技术文献出版社, 2006: 43-52. 
[2]Schmelzer J W P, Schmelzer J Jr. Kinetics of bubble formation and th
e tensile strength of liquids[J]. Atmospheric Research, 2003, 65(3): 303-324. [3]Jones S F, Evans G M, Galvin K P. Bubble nucleation from gas cavities-a review[J]. Advances in Colloid and Interface Science, 1999, 80: 27-50. 
[4]Trevena D H. Cavitation and Tension in Liquids[M]. Bristol: Adam H
ilger, 1987: 7-14. 
[5]Lienhard J H, Karimi A. Homogeneous Nucleation and the Spinodal Line
[J]. J Heat Transfer, 1981, 103: 61-64. 
[6]Li J, Peterson G P, Cheng P. Mechanical nonequilibrium considerations in
homogeneous bubble nucleation for unsteadystate boiling[J]. International Journal of Heat and Mass Transfer, 2005, 48: 3081-3096. 
[7]Bapat P S, Pandit A B. Thermodynamic and kinetic considerations of nu
cleation and stabilization of acoustic cavitation bubbles in water[J]. Ultrasonics Sonochemistry, 2008, 15: 65-77. 
[8]徐济, 贾斗南. 沸腾传热和气液两相流[M]. 北京: 原子能出版社, 1993:369
. 
[9]Takahashi M, Ezawa E, Etou J. Kinetic characteristic of bubble nucleation
in superheated water using inclusions[J]. J Phy Soc Jpn, 2002, 71(9): 2174-2177.

[10]Zheng Q, Durben D J, Wolf G H. Liquids at Large negative Pressure: Water at the Homogeneous Nucleation limit[J]. Science, 1991, 254(5033): 829-832. 
[11]Green J L, Durben D J, Wolf G H. Water and Solutions at Negative Pre
ssure: Raman Spectroscopic Study to -80 Megapascals[J]. Science, 249(4969):649-652. 
[12]Caupin F, Herbert E. Cavitation in water: a review[J]. Comptes Ren
dus Physique, 2006, 7: 1000-1017.

PDF(934 KB)

3212

Accesses

0

Citation

Detail

段落导航
相关文章

/