基于人工神经网络的合成脱水长春碱工艺优化研究

李硕;赵春芳;吴泽强;熊茵;余龙江*

北京化工大学学报(自然科学版) ›› 2008, Vol. 35 ›› Issue (1) : 24-28.

PDF(853 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年5月9日 星期五
Email Alert  RSS
PDF(853 KB)
北京化工大学学报(自然科学版) ›› 2008, Vol. 35 ›› Issue (1) : 24-28.
化学与化学工程

基于人工神经网络的合成脱水长春碱工艺优化研究

  • 李硕;赵春芳;吴泽强;熊茵;余龙江*
作者信息 +

Process optimization of the synthesis of anhydrovinblastine using artificial neural networks

  • LI Shuo;ZHAO ChunFang;WU ZeQiang;XIONG Yin;YU LongJiang
Author information +
文章历史 +

摘要

脱水长春碱是合成长春瑞滨、长春氟宁等新一代高价值抗癌药物最为重要的中间体。本文以硫酸长春碱为原料,进行了脱水长春碱合成的工艺研究。采用正交实验与人工神经网络对该工艺进行了优化,建立了三层改进的误差反向传播网络(BP-ANN神经网络),并验证了该模型的有效性。扩大正交实验的水平范围,通过模型的模拟及实验验证后,得到了合成脱水长春碱的最佳工艺条件:在DMF体系中,底物浓度为15mmol/L,采用C2O2Cl2为脱水剂,其用量与底物的当量比为50∶1,在4℃下进行脱水反应,反应12h后,加入冰水,氨水调节pH为10.0,乙醚与二氯甲烷混合溶液(体积比为10)萃取,得到产物的总收率达到70.88%。

Abstract

Anhydrovinblastine, which is a crucial intermediate in the synthesis of vinorelbine and vinflunine, can be synthesized from vinblastine, but the reported yields are not sufficiently high for practical application. The synthetic conditions for this reaction have been optimized using orthogonal tests and artificial neural networks. A network model was established by improving backpropagation of an artificial neural network (BP-ANN) with 3 layers, and was shown to be correct. A wider range of factors was then introduced into the BP-ANN model in order to obtain the optimal conditions as follows: the vinblastine was dissolved in DMF with a concentration of 15mmol/L; the reagent was oxalyl chloride, C2O2Cl2, with the stoichiometric proportion between the reagent and vinblastine being 50∶1; the reaction temperature was 4℃ and the duration was 12 hours; the extractant phase was the mixture of ether and methylene chloride (volumn ratio 10). The maximum yield of anhydrovinblastine obtained under these conditions was 70.88%. 

引用本文

导出引用
李硕;赵春芳;吴泽强;熊茵;余龙江*. 基于人工神经网络的合成脱水长春碱工艺优化研究[J]. 北京化工大学学报(自然科学版), 2008, 35(1): 24-28
LI Shuo;ZHAO ChunFang;WU ZeQiang;XIONG Yin;YU LongJiang. Process optimization of the synthesis of anhydrovinblastine using artificial neural networks[J]. Journal of Beijing University of Chemical Technology, 2008, 35(1): 24-28

参考文献

[1]Fahy J. Modifications in the upper or velbenamine part of th
e vinca alkaloids have major implications for tubulin interacting activities[J]. Current Pharmaceutical Design, 2001, 34(7): 1181-1197.
[2]Fahy J, Thillaye du Boullay V, Bigg D C H. New method of synthesis of vinca alkaloid derivatives[J]. Bioorganic & Medicinal Chemistry Letters,
2002, 12(3): 505-507. 
[3]Gueritte F, Langlois N, Langlois Y, et al. 20'Deethylanhydrovinbla
stine[J]. Journal of Organic Chemistry, 1981, 46(1): 5393-5395. 
[4]Hardouin C, Doris E, Rousseau B. Selective deoxygenation of leurosine: concise access to anhydrovinblastine[J]. Journal of Organic Chemistry, 2002,
67(2): 6571-6574. 
[5]Langlois N, Gueritte F, Langlois Y, et al. Application of a modificat
ion of the polonovski reaction to the synthesis of vinblastinetype alkaloids[
J]. Journal of the American Chemical Society, 1976, 98(1): 7017-7024.
[6]陈永江,陈洪明,李莉,等. 酒石酸长春瑞滨的合成[J]. 中国医药工业杂志,19
99, 30(1): 6-8.
[7]陈允平,王旭蕊,韩宝亮. 人工神经网络原理及其应用[M]. 北京:中国电力出版
社,2002: 1-3.
[8]党建武. 神经网络技术及应用[M]. 哈尔滨工程大学出版社,2000.[9]吴启迪,汪镭. 反馈式神经网络智能控制[M]. 上海:上海科技教育出版社, 2004: 6-7.〖ZK)〗
[10]Lacher R C. Backpropagation learning in expert networks[J]. IEEE Transaction on Neural Networks, 1992, 1(3): 62-72.
[11]Liu Jiangto, Chang Hongbin, Xu Zuyao, et al. Prediction of the flow
stress of highspeed steel during hot deformation using a BP artificial neural
network[J]. Journal 〖JP2〗of Materials Processing Technology, 2000, 103(2): 2
00-〖JP〗205.
[12]胡德文,王正志,王耀男,等. 神经网络自适应控制[M]. 长沙:国防科技大学
出版社,2006.
[13]包俊敏,夏德生,陈云华. 合成长春瑞滨的方法:CN 1552716A[P]. 20041208.

PDF(853 KB)

5714

Accesses

0

Citation

Detail

段落导航
相关文章

/