
扰动KdV方程解的先验估计
Priori estimates for the solutions of perturbed Korteweg-de Vries Equation
对于带微扰的KdV方程ut+6uux+uxx=εR(u),(ε>0),在初值u0(x)∈C∞(-∞,+∞),当|x|→∞时指数衰减的条件下,分别构造出带两种不同扰动项的KdV方程的扰动孤立波解满足的能量关系式,并运用能量分析方法对扰动的孤立波解进行先验估计,得到如下结论:(1)R(u)=δ(εt)u, δ(s)∈C[0,+∞),δ(0)=0,时,解在-∞<x<+∞,0≤εt≤T内一致有界;(2)R(u)=-Δ(εt)uxxx,Δ(0)=0,Δ(s)∈C1[0,+∞), 解在-∞<x<+∞,0≤εt≤T,0≤ε≤ε1内一致有界。
Energy equalities are constructed for the perturbed solitary wave solutions corresponding to two kinds of perturbations for the perturbed KdV equation
ut+6uux+uxx=εR(u),(ε>0), under the condition that the initial data u0(x)∈C∞(-∞,+∞), decay exponentially as |x|→∞. Priori estimates of the bound of the solutions are obtained via the method of energy analysis: (1) if R(u)=δ(εt)u, δ(s)∈C[0,+∞) and δ(0)=0, the solutions are uniformly bounded in the region -∞<x<+∞,0≤εt≤T; (2) in the case of R(u)=-Δ(εt)uxxx, Δ(0)=0, Δ(s)∈C1[0,+∞), the solutions are uniformly bounded in the region -∞<x<+∞, 0≤εt≤T, 0≤ε≤ε1 for some positive small ε1.
[1] MIURA R M. The Korteweg-de Vries equation: a survey of results[J]. SIAM Review, 1976, 18(3): 419-424.
[2] SCOTT A, CHU F, MCLAUGHLIN D. The soliton: a new concept in applied science[J]. Proceeding of the IEEE, 1973, 61(10): 1443-1474.
[3 ] LIU Guanting, FAN Tiangou. Periodic solutions of 2+1 dimensional nonlinear evolution equations[J]. Journal of Inner Mongolia Normal University, 2004, 33(4): 345-352.
[4] 李晓燕, 张令元. (2+1)维KdV方程的周期波解和孤立波解[J]. 兰州理工大学学报, 2005, 33(1): 138-140.
[5] JIANG Xinhua, WONG R. Asymptotic analysis of a perturbed periodic solution of the KdV equation[J]. Studies in Applied Mathematics, 2006, 116: 21-33.
[6] 李向正,王明亮,李晓燕. 应用F展开法求KdV方程地周期解[J]. 应用数学, 2005, 18(2): 303-307.
[7] MIURA R M, GARDNER C S, KRUSKAL M D. The Korteweg-de Vris equation and generalizations, Ⅱ Existence of conservation laws and constants of motion[J]. Journal of Mathematical physics, 1968, 9: 1204-1209.
[8] 崔艳芬, 茅德康. 一个解KdV方程的满足两个守恒律的差分格式[J]. 应用数学与计算数学学报, 2005, 19(2): 15-22.
[9] AKYLAS T R, GRIMSHAW R. Solitary internal waves with oscillatory tails[J]. The Journal of Fluid Mechanics, 1992, 242: 279-298.
[10]GRIMSHAW R, MITSUDERA H. Slowly varying solitary wave solution of the perturbed Korteweg-de Vris equation revised[J]. Studies in Applied Mathematics, 1993, 90: 75-86.
/
〈 |
|
〉 |