基于小波压缩和用户反馈的图像检索系统

张 玲; 王雪晶 ;朱群雄

北京化工大学学报(自然科学版) ›› 2006, Vol. 33 ›› Issue (1) : 98-101.

PDF(653 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月9日 星期三
Email Alert  RSS
PDF(653 KB)
北京化工大学学报(自然科学版) ›› 2006, Vol. 33 ›› Issue (1) : 98-101.
研究论文

基于小波压缩和用户反馈的图像检索系统

  • 张 玲; 王雪晶 ;朱群雄
作者信息 +

Content-based image retrieval based on wavelet-decomposition and feedba ck

  • ZHANG Ling ;WANG Xue-jing; ZHU Qun-xiong
Author information +
文章历史 +

摘要

为提高图像检索系统的准确率和有效率,本文提出一种基于小波压缩和用户反馈的图像检索方案。本系统直接对小波压缩图像进行分析,提取压缩域低频图像的颜色、纹理、形状特征,然后通过判别函数判别图像的相似性。利用检索结果的聚类性,以聚类用户反馈来提高检索系统的准确率和有效率。实验结果表明,利用颜色和纹理特征检索的效果较好,而利用形状特征检索的结果一般。

Abstract

This paper proposed an image retrieval method based on wavelet-compress and feedback which can improve the performance of a content-based image retrieval system. The proposed method compresses images based on sub-band coding, and then exacts compressed images features such as color, texture and shape. Correction and validity can be improved by the feedback of clustering correlativity. Experiment results prove that although in shape feature space the proposed method has worse performance than the basic method based on original image, in color and texture feature space the proposed method has higher performance than the basic method.

引用本文

导出引用
张 玲; 王雪晶 ;朱群雄. 基于小波压缩和用户反馈的图像检索系统[J]. 北京化工大学学报(自然科学版), 2006, 33(1): 98-101
ZHANG Ling ;WANG Xue-jing; ZHU Qun-xiong. Content-based image retrieval based on wavelet-decomposition and feedba ck [J]. Journal of Beijing University of Chemical Technology, 2006, 33(1): 98-101

参考文献

[1] 庄越挺,潘云鹤,芮勇. 基于内容的图像检索综述[J].模式识别与人工智能, 1999,12 (2):42-50.
[2] Bimbo A. Visual Information Retrieval[M]. San Francisco: Morgan Kaufmann, Inc. 1999.
[3] Niblack W, Zhu X, Hafner J L, et al. Updates to the QBIC system[J]. SPIE, 1998, 3312: 150-161.
[4] 吴高洪,章毓晋,林行刚.利用小波变换和特征加权进行纹理分割[J].中国图象图形学报, 2001,4(6):333-337.
[5] 杨翔英,章毓晋.小波轮廓描述符及在图像查询中的应用[J].计算机学报,1999,22(7):753-757.
[6] Cox I J, Miller M L, Minka T P, Yianilos P N. An optimized interaction strategy for bayesian relevance feedback [J]. CVPR'98, Santa Barbara, CA, 1
998,(6):553-558.
[7] 黄翔宇,章毓晋. 基于压缩域的图象检索技术研究进展[J]. 中国图象图形学报,2003,5, 499-508.
[8] Salari E, Ling Z. Texture segmentation using hierarchical wavelet dec
omposition[J]. Pattern Recognition, 1995, 28 (12) :1819-1824.
[9] Mallat S G. A theory of multi resolution signal decomposition: The wavelet representation[J]. IEEEPAMI, 1989, 11 (7) :674-693.
[10] Daubechies I. Orthogonal bases of compactly supported wavelets[J]. Comm Pure App l. Math, 1988, 41: 909-996.
[11] Rafael C Gonzalez, Richard E Woods. Digital image processing (Second Edition)[M]. Newjeasy: Publishing House of Electronics Industry, 2003,545-5
48.
[12] Jarma L, Markus K, Sami L, et al. Self-organizing maps as a rel
evance feedback technique in contentbased image retrieval[J]. Pattern Analysis & Application, 2001, (4): 140-152.
[13] Rui Y, Huang S, Ortega M, et al. Relevance feedback: a power too
l in interactive contentbased image retrieval[J]. IEEE Transactions on Circu
its Systems for Video Technology, 1998,8(5):644-655.
[14] Rui Y, Huang T S. A novel relevance feedback technique in image retr
ieval[C]. In: Proceedings of the 7th ACM International Conference on Multimedia. Orlando, Florida, 1999, 67-70.

PDF(653 KB)

2941

Accesses

0

Citation

Detail

段落导航
相关文章

/