中立型时滞随机微分方程是描述诸如医学、生态学、经济学、物理学等学科中众多现象的一种重要工具。然而, 由于此类方程的复杂性, 虽然其应用广泛,但是解析解却很难得到, 因此研究其数值解以及数值解的收敛性很有必要。另一方面, 过程的当前状态依赖于其过去的状态, 但是这种依赖未必是常时滞的, 从而使得考虑变时滞情形具有重要的实际意义。Mao等[1-2]提出截断Euler-Maruyama(EM)方法,并对该方法得到的数值解的收敛性和稳定性进行了研究。Milošević[3]和Guo等[4]分别研究了时滞随机微分方程和中立型时滞随机微分方程数值解的收敛性。Lan等[5-7]提出了修正截断EM方法,并且得到典型随机微分方程和中立型常时滞随机微分方程的数值解的收敛速度和渐进稳定性。由于在变时滞情形下通常的修正截断方法会变为隐式格式,而相比于显式格式隐式格式通常计算量较大,因此本文将研究对应方程的显式格式(改进的修正截断EM方法)的收敛性及收敛速度。
1 基本假设、定义及重要引理设(Ω,
$ \begin{array}{l} \ \ \ \ \ \ \ \ \mathrm{d}[x(t)-u(x(t-\delta(t)))]=f(x(t), x(t- \\ \delta(t))) \mathrm{d} t+g(x(t), x(t-\delta(t))) \mathrm{d} B(t) \end{array} $ | (1) |
初值满足:x0=ξ={ξ(θ), θ∈[-τ, 0]}∈
H1 对任意正整数R,存在正常数LR,使得∀x, x, y, y∈Rn,且|x|∨|x|∨|y|∨|y|≤R,都有
$ \begin{aligned} &\ \ \ \ \ \ \ \ |f(x, y)-f(\bar{x}, \bar{y})| \vee|g(x, y)-g(\bar{x}, \bar{y})| \leqslant \\ &L_{R}(|x-\bar{x}|+|y-\bar{y}|) \end{aligned} $ |
H2 存在常数η∈(0, 1),对∀x, y∈Rn,都有|u(x)-u(y)|≤η|x-y|,当u(0)=0时,|u(x)|≤η|x|。
H3 函数δ: R+→R+连续可微,且满足|δ′(t)| < δ < 1。
H4(Khasminskii-type条件) 存在常数p≥2和K>0,使得对于∀x, y∈Rn, a∈(0, 1],有
$ \begin{aligned} &\ \ \ \ \ \ \ \ \left\langle x-a u\left(\frac{y}{a}\right), f(x, y)\right\rangle+\frac{p-1}{2}|g(x, y)|^{2} \leqslant K(1+ \\ &\left.|x|^{2}+|y|^{2}\right) \end{aligned} $ |
H5 存在常数Cξ,对于p≥2有
$ E \sup \limits_{t, s \in[-\tau, 0],|s-t| \leqslant \varDelta}|\xi(s)-\xi(t)|^{p} \leqslant C_{\xi} \varDelta^{\frac{p}{2}} $ |
需注意的是由文献[3]可知,当H1~H4满足时,方程(1)的解x(t)在初值x0的条件下存在且唯一,并且对T>0有
定义停时τR=inf {t≥0, |x(t)|≥R}, infϕ=∞,则
令Δ∈(0, 1)为步长且τ=mΔ,对于充分小的Δ*>0,令h(Δ)是正的严格递减函数h: (0, Δ*]→(0, ∞)且满足
$ \lim\limits _{\varDelta \rightarrow 0} h(\varDelta)=\infty, \lim\limits _{\varDelta \rightarrow 0} L_{h(\varDelta)}^{2} \varDelta=0 $ | (2) |
由文献[6]知若给定LR,则函数h一定存在。
对任意的Δ>0,定义修正截断函数fΔ为
$ f_{\varDelta}(x, y)= \begin{cases}f(x, y), & |x| \vee|y| \leqslant h(\varDelta) \\ a f\left(x_{1}, y_{1}\right), & |x| \vee|y|>h(\varDelta)\end{cases} $ |
式中,
下面定义改进的修正截断EM格式。令tk=kΔ, N=T/Δ,Xk=ξ(tk), -m≤k≤0, X-m-1: =X-m,若k=0, 1, …, N,令
$ \begin{array}{l} \ \ \ \ \ \ \ \ X_{k+1}=u\left(X_{k-I_{k}}\right)+X_{k}-u\left(X_{k-1-I_{k-1}}\right)+f_{\varDelta}\left(X_{k},\right. \\ \left.X_{k-I_{k}}\right) \varDelta+{g_{\varDelta}}\left(X_{k}, X_{k-I_{k}}\right) \varDelta B_{k} \end{array} $ | (3) |
式中,gΔ定义与fΔ相同,其中
为定义连续格式,令
$ {\bar{x}}_{\varDelta}(t)=\sum\limits_{k=0}^{N-1} X_{k} I_{\left[t_{k}, t_{k+1}\right)}(t) $ | (4) |
$ \bar{y}_{\varDelta}(t)=\sum\limits_{k=0}^{N-1} X_{k-I_{k}} I_{\left[t_{k}, t_{k+1}\right)}(t) $ | (5) |
$ \begin{aligned} &\ \ \ \ \ \ \ \ Z_{k}(t)=\left(1-\frac{t-t_{k}}{\varDelta}\right) \bar{y}_{\varDelta}\left(t_{k-1}\right)+\frac{t-t_{k}}{\varDelta} \bar{y}_{\varDelta}\left(t_{k}\right), t \in \\ &{\left[t_{k}, t_{k+1}\right)} \end{aligned} $ | (6) |
$ \bar{z}_{\varDelta}(t)=\sum\limits_{k=0}^{N-1} Z_{k}(t) I_{\left[t_{k}, t_{k+1}\right)}(t) $ | (7) |
定义xΔ(t)=ξ(t), t∈[-τ, 0],对∀t∈[0, T],令
$ \begin{aligned} &\ \ \ \ \ \ \ \ x_{\varDelta}(t)=\xi(0)+u\left(\bar{z}_{\varDelta}(t)\right)-u\left(x_{\varDelta}\left(-\varDelta-I_{-1} \varDelta\right)\right)+ \\ &\int_{0}^{t} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{0}^{t} g_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \cdot \\ &\mathrm{d} B(s) \end{aligned} $ | (8) |
对∀t∈[tk, tk+1),上述格式也可写成如下形式
$ \begin{array}{l} \ \ \ \ \ \ \ \ x_{\varDelta}(t)=x_{\varDelta}\left(t_{k}\right)+u\left(Z_{k}(t)\right)-u\left(x _ { \varDelta } \left(t_{k-1}-I_{k-1} \cdot\right.\right.\\ \varDelta))+\int_{t_{k}}^{t} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{t_{k}}^{t} g_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right.\\ \left.\bar{y}_{\varDelta}(s)\right) \mathrm{d} B(s) \end{array} $ | (9) |
容易验证xΔ(tk)=xΔ(tk)=Xk, -m≤k≤N。
引理1 假设H1成立,那么对于任意固定的Δ>0,有
$ \begin{aligned} &\ \ \ \ \ \ \ \ \left|f_{\varDelta}(x, y)-f_{\varDelta}(\bar{x}, \bar{y})\right| \vee\left|g_{\varDelta}(x, y)-g_{\varDelta}(\bar{x}, \bar{y})\right| \leqslant \\ &5 L_{h(\varDelta)}(|x-\bar{x}|+|y-\bar{y}|) \end{aligned} $ |
证明参见文献[7]中引理3.1。
引理2 假设H4成立,则有
$ \begin{aligned} &\ \ \ \ \ \ \ \ \left\langle x-u(y), f_{\varDelta}(x, y)\right\rangle+\frac{p-1}{2}\left|g_{\varDelta}(x, y)\right|^{2} \leqslant 2 K(1+ \\ &\left.|x|^{2}+|y|^{2}\right) \end{aligned} $ |
证明参见文献[7]中引理3.2。
引理3 对于∀t≥0,有
$ E\left|\bar{z}_{\varDelta}(t)\right|^{p} \leqslant \sup\limits _{-\tau \leqslant s \leqslant t} E\left|x_{\varDelta}(s)\right|^{p} $ |
证明 不妨设t∈[tk, tk+1),由式(6)、(7)可知
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|\bar{z}_{\varDelta}(t)\right|^{p}=E\left|Z_{k}(t)\right|^{p}=E \left| \bar{y}_{\varDelta}\left(t_{k-1}\right)+\frac{t-t_{k}}{\varDelta}\right. \\ &\left.\left(\bar{y}_{\varDelta}\left(t_{k}\right)-\bar{y}_{\varDelta}\left(t_{k-1}\right)\right)\right|^{p} \leqslant \max \left\{E\left|\bar{y}_{\varDelta}\left(t_{k-1}\right)\right|^{p},\right. \\ &\left.E\left|\bar{y}_{\varDelta}\left(t_{k}\right)\right|^{p}\right\} \leqslant \sup \limits_{-\tau \leqslant s \leqslant t} E\left|x_{\varDelta}(s)\right|^{p} \end{aligned} $ |
引理4 假设H1、H2、H3、H5成立,且
$ \begin{aligned} &\ \ \ \ \ \ \ \ \sup \limits_{k \leqslant\left[\frac{t}{\varDelta}\right]} E\left|x_{\varDelta}\left(t_{k}\right)-x_{\varDelta}\left(t_{k-1}\right)\right|^{p} \leqslant C(p, T)\left(L_{h(\varDelta)}^{p}\right. \\ &\left.\varDelta^{\frac{p}{2}} \sup \limits_{s \leqslant t} E\left|x_{\varDelta}(s)\right|^{p}+\varDelta^{\frac{p}{2}}\right) \end{aligned} $ |
证明 由式(9)易知,
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}\left(t_{k}\right)-x_{\varDelta}\left(t_{k-1}\right)\right|^{p}=E \mid u\left(\bar{z}_{\varDelta}\left(t_{k}\right)\right)-u\left(\bar{z}_{\varDelta}\right. \\ &\left.\left(t_{k-1}\right)\right)+\int_{t_{k-1}}^{t_{k}} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{t_{k-1}}^{t_{k}} g_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right. \\ &\left.\bar{y}_{\varDelta}(s)\right)\left.\mathrm{d} B(s)\right|^{p} \leqslant(1+c)^{p-1} \eta^{p} E\left|\bar{z}_{\varDelta}\left(t_{k}\right)-\bar{z}_{\varDelta}\left(t_{k-1}\right)\right|^{p}+ \\ &\left(\frac{1+c}{c}\right)^{p-1} E\left[\left| \int_{t_{k-1}}^{t_{k}} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{t_{k-1}}^{t_{k}} g_{\varDelta}\right.\right. \\ &\left.\left.\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} B(s)\right|^{p}\right] \end{aligned} $ |
又由式(6)、(7)可知
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|\bar{z}_{\varDelta}\left(t_{k}\right)-\bar{z}_{\varDelta}\left(t_{k-1}\right)\right|^{p}=E\left|\bar{y}_{\varDelta}\left(t_{k-1}\right)-\bar{y}_{\varDelta}\left(t_{k-2}\right)\right|^{p}= \\ &E\left|X_{k-1-I_{k-1}}-X_{k-2-I_{k-2}}\right|^{p} \end{aligned} $ |
根据[x]的定义和假设H3可知
$ \begin{array}{l} \ \ \ \ \ \ \ \ k-1-I_{k-1}-\left(k-2-I_{k-2}\right)=1+I_{k-2}-I_{k-1} \leqslant \\ 1+\left(\left[\frac{\delta\left(t_{k-2}\right)-\delta\left(t_{k-1}\right)}{\varDelta}\right]+1\right) \leqslant 1+\left(\left[\frac{\left|\delta^{\prime}(\theta)\right| \varDelta}{\varDelta}\right]+\right.\\ 1)=2 \end{array} $ |
故
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|\bar{z}_{\varDelta}\left(t_{k}\right)-\bar{z}_{\varDelta}\left(t_{k-1}\right)\right|^{p} \leqslant 2^{p-1} \sup\limits _{-m \leqslant i \leqslant k} E \mid x_{\varDelta}\left(t_{i}\right)- \\ &\left.x_{\varDelta}\left(t_{i-1}\right)\right|^{p} \end{aligned} $ |
又由引理1,所以得到
$ \begin{array}{l} \ \ \ \ \ \ \ \ \sup \limits_{k \leqslant\left[\frac{t}{\varDelta}\right]} E\left|x_{\varDelta}\left(t_{k}\right)-x_{\varDelta}\left(t_{k-1}\right)\right|^{p} \leqslant[2(1+c)]^{p-1} \eta^{p} \\ \sup \limits_{i \leqslant\left[\frac{t}{\varDelta}\right]} E\left|x_{\varDelta}\left(t_{i}\right)-x_{\varDelta}\left(t_{i-1}\right)\right|^{p}+\left(\frac{1+c}{c}\right)^{p-1} \sup \limits_{k \leqslant\left[\frac{t}{\varDelta}\right]} E \\ {\left[\left| \int_{t_{k-1}}^{t_{k}} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{t_{k-1}}^{t_{k}} g_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right.\right.\right.} \\ \left.\left.\bar{y}_{\varDelta}(s)\right)\left.\mathrm{d} B(s)\right|^{p}\right] \leqslant[2(1+c)]^{p-1} \eta^{p} \sup \limits_{i \leqslant\left[\frac{i}{\varDelta}\right]} E \mid x_{\varDelta}\left(t_{i}\right)-\\ \left.x_{\varDelta}\left(t_{i}\right)\right|^{p}+\left(\frac{3(1+c)}{c}\right)^{p-1}\left(\varDelta^{p}+\varDelta^{\frac{p}{2}}\right) L_{h(\varDelta)}^{p} 2 \sup \limits_{s \leqslant t} E \\ \left|x_{\varDelta}(s)\right|^{p}+\left(\frac{3(1+c)}{c}\right)^{p-1}\left(|f(0,0)|^{p} \varDelta^{p}+|g(0,0)|^{p} \varDelta^{\frac{p}{2}}\right) \end{array} $ |
由于
引理5 设引理4中的条件均成立,则
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-\bar{x}_{\varDelta}(t)\right|^{p} \leqslant C(p, T)\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \sup \limits_{s \leqslant t} E\right. \\ &\left.\left|x_{\varDelta}(s)\right|^{p}+\varDelta^{\frac{p}{2}}\right) \end{aligned} $ |
证明 不妨设t∈[tk, tk+1)。由式(9)得
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-\bar{x}_{\varDelta}(t)\right|^{p}=E \left| u\left(Z_{k}(t)\right)-u\left(x _ { \varDelta } \left(t_{k-1}-\right.\right.\right. \\ &\left.\left.I_{k-1} \varDelta\right)\right)+\int_{t_{k}}^{t} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{t_{k}}^{t} g_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right. \\ &\left.\bar{y}_{\varDelta}(s)\right)\left.\mathrm{d} B(s)\right|^{p} \leqslant\left(1+c_{0}\right)^{p-1} \eta^{p} E \mid Z_{k}(t)-x_{\varDelta}\left(t_{k-1}-\right. \\ &\left.I_{k-1} \varDelta\right)\left.\right|^{p}+\left[\frac{2\left(1+c_{0}\right)}{c_{0}}\right]^{p-1} \times E\left[\left| \int_{t_{k}}^{t} f_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right.\right.\right. \\ &\left.\left.\bar{y}_{\varDelta}(s)\right)\left.\mathrm{d} s\right|^{p}+\left|\int_{t_{k}}^{t} g_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} B(s)\right|^{p}\right] \end{aligned} $ |
注意到
$ \begin{aligned} &\ \ \ \ \ \ \ \ \left|Z_{k}(t)-x_{\varDelta}\left(t_{k-1}-I_{k-1} \varDelta\right)\right|=\left|\left(1-\frac{t-t_{k}}{\varDelta}\right)\right. \\ &\left.X_{k-1-I_{k-1}}+\frac{t-t_{k}}{\varDelta} X_{k-I_{k}}-X_{k-1-I_{k-1}}\right|\leqslant| X_{k-I_{k}}- \\ &X_{k-1-I_{k-1}} \mid \end{aligned} $ |
从而由引理4得
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-\bar{x}_{\varDelta}(t)\right|^{p} \leqslant C(p, T)\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \sup \limits_{s \leqslant t} E\right. \\ &\left.\left|x_{\varDelta}(s)\right|^{p}+\varDelta^{\frac{p}{2}}\right) \end{aligned} $ |
根据引理5不难得到
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|\bar{y}_{\varDelta}(t)-\bar{z}_{\varDelta}(t)\right|^{p} \leqslant C(p, T)\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \sup \limits_{s \leqslant t} E\right. \\ &\left.\left|x_{\varDelta}(s)\right|^{p}+\varDelta^{\frac{p}{2}}\right) \end{aligned} $ |
引理6 假设H1~H5均成立,则
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-u\left(\bar{z}_{\varDelta}(t)\right)\right|^{p} \leqslant C(p, T)\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}}\cdot\right. \\ &\left.\int_{0}^{t} \sup \limits_{r \leqslant s} E\left|x_{\varDelta}(r)\right|^{p} \mathrm{~d} s+\varDelta^{\frac{p}{2}}\right)+C(p, \eta, T) \end{aligned} $ |
证明 由伊藤公式得
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-u\left(\bar{z}_{\varDelta}(t)\right)\right|^{p} \leqslant E \left| \xi(0)-u\left(x _ { \varDelta } \left(-\varDelta-\right.\right.\right. \\ &\left.\left.I_{-1} \varDelta\right)\right)\left.\right|^{p}+p E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2}\left[\bar{x}_{\varDelta}(s)-\right. \\ &\left\langle u\left(\bar{y}_{\varDelta}(s)\right), f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right)\right\rangle+\frac{p-1}{2} \mid g_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right. \\ &\left.\left.\bar{y}_{\varDelta}(s)\right)\left.\right|^{2}\right] \mathrm{d} s+E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2}\left\langle x_{\varDelta}(s)-\right. \\ &\left.\bar{x}_{\varDelta}(s), f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right)\right\rangle \mathrm{d} s+E \int_{0}^{t} \mid x_{\varDelta}(s)- \\ &\left.u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2}\left\langle u\left(\bar{y}_{\varDelta}(s)\right)-u\left(\bar{z}_{\varDelta}(s)\right), f_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right.\right. \\ &\left.\left.\bar{y}_{\varDelta}(s)\right)\right\rangle \mathrm{d} s=: I_{1}+I_{2}+I_{3}+I_{4} \end{aligned} $ |
下面分别估计I1、I2、I3、I4这4项。
$ \begin{aligned} &\ \ \ \ \ \ \ \ I_{1} \leqslant 2^{p-1}\left(E|\xi(0)|^{p}+\eta^{p} E\left|x_{\varDelta}\left(-\varDelta-I_{-1} \varDelta\right)\right|^{p}\right) \leqslant \\ &C(p, \eta) \sup \limits_{-\tau \leqslant s \leqslant 0} E|\xi(s)|^{p} \end{aligned} $ | (10) |
由引理2和Young不等式得
$ \begin{aligned} &\ \ \ \ \ \ \ \ I_{2} \leqslant p K E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2} \times(1+ \\ &\left.\left|\bar{x}_{\varDelta}(s)\right|^{2}+\left|\bar{y}_{\varDelta}(s)\right|^{2}\right) \mathrm{d} s \leqslant C(p, \eta)\left(E \int_{0}^{t} \mid x_{\varDelta}(s)-\right. \\ &\left.\left.u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p} \mathrm{~d} s+\int_{0}^{t} \sup \limits_{r \leqslant s} E\left|x_{\varDelta}(r)\right|^{p} \mathrm{~d} s\right)+C(p, \eta, T) \end{aligned} $ | (11) |
由引理1和Young不等式得
$ \begin{aligned} &\ \ \ \ \ \ \ \ I_{3} \leqslant p E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2}\left(|f(0,0)|^{2}+\right. \\ &\left.L_{h(\varDelta)}^{2}\left|x_{\varDelta}(s)-\bar{x}_{\varDelta}(s)\right|^{2}+\left|\bar{x}_{\varDelta}(s)\right|^{2}+\left|\bar{y}_{\varDelta}(s)\right|^{2}\right) \mathrm{d} s \leqslant \\ &C(p, \eta) E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p} \mathrm{~d} s+C(p, T) \\ &\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \int_{0}^{t} \sup \limits_{r \leqslant s} E\left|x_{\varDelta}(r)\right|^{p} \mathrm{~d} s+\varDelta^{\frac{p}{2}}\right) \end{aligned} $ | (12) |
同理,由引理5和Young不等式可得
$ \begin{aligned} &\ \ \ \ \ \ \ \ I_{4} \leqslant p \eta E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2}\left(|f(0,0)|^{2}+\right. \\ &\left.L_{h(\varDelta)}^{2}\left|\bar{y}_{\varDelta}(s)-\bar{z}_{\varDelta}(s)\right|^{2}+\left|\bar{x}_{\varDelta}(s)\right|^{2}+\left|\bar{y}_{\varDelta}(s)\right|^{2}\right) \mathrm{d} s \leqslant \\ &C(p, \eta) E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p} \mathrm{~d} s+C(p, T)\\ &\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \int_{0}^{t} \sup \limits_{r \leqslant s} E\left|x_{\varDelta}(r)\right|^{p} \mathrm{~d} s+\varDelta^{\frac{p}{2}}\right) \end{aligned} $ | (13) |
由式(10)~(13)得
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-u\left(\bar{z}_{\varDelta}(t)\right)\right|^{p} \leqslant C(p, \eta) E \int_{0}^{t} \mid x_{\varDelta}(s)- \\ &\left.u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p} \mathrm{~d} s+C(p, T)\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \int_{0}^{t} \sup \limits_{r \leqslant s} E\left|x_{\varDelta}(r)\right|^{p} \mathrm{~d} s+\right. \\ &\left.\varDelta^{\frac{p}{2}}\right)+C(p, \eta, T) \end{aligned} $ |
再根据Gronwall引理[8]即可得证。
引理7 假设H1~H5均成立,且
定义停时ρΔ, R=inf{t≥0, |xΔ(t)|≥R},则
证明
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)\right|^{p}=E\left|x_{\varDelta}(t)-u\left(z_{\varDelta}(t)\right)+u\left(z_{\varDelta}(t)\right)\right|^{p} \leqslant \\ &\left(1+c^{\prime}\right)^{p-1} E\left|x_{\varDelta}(t)-u\left(z_{\varDelta}(t)\right)\right|^{p}+\left(\frac{1+c^{\prime}}{c^{\prime}}\right)^{p-1} \eta^{p} \cdot \\ &E\left|z_{\varDelta}(t)\right|^{p} \end{aligned} $ |
当c′充分大时,
$ \sup \limits_{0<\varDelta<\varDelta_{0} } \sup \limits_{0<t<T}E\left|x_{\varDelta}(t)\right|^{p} \leqslant C<\infty, \forall T>0 $ | (14) |
显然将式(14)中的xΔ(t)换成xΔ(t∧ρΔ, R)不等式仍成立。
再由RpP(ρΔ, R≤T)≤E(|xΔ(T∧ρΔ, R)|p)≤C可得
引理8 假设引理7中的假设均成立,则对∀t∈[tk, tk+1)和充分小的Δ(< 1),2 < q < p,有
$ E\left|\bar{y}_{\varDelta}(t-\delta(t))-\bar{z}_{\varDelta}(t)\right|^{q} \leqslant C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}} $ |
证明 显然t-δ(t)∈[tk-1-IkΔ, tk+1-Ik+1·Δ),由H3,可得
$ \begin{aligned} &\ \ \ \ \ \ \ \ t_{k+1}-I_{k+1} \varDelta-\left(t_{k-1}-I_{k} \varDelta\right)=2 \varDelta+\left(I_{k} \varDelta-I_{k+1} \varDelta\right) \leqslant \\ &3 \varDelta+\left[\left|\delta^{\prime}(\theta)\right|\right] \varDelta=3 \varDelta \end{aligned} $ |
故yΔ(t-δ(t))可能取Xk-1-Ik、Xk-Ik、Xk+1-Ik,由引理4可得如下结果。
1) 当yΔ(t-δ(t))=Xk-1-Ik时,有
$ \begin{array}{l} \ \ \ \ \ \ \ \ E\left|\bar{y}_{\varDelta}(t-\delta(t))-\bar{z}_{\varDelta}(t)\right|^{q}=E\left|X_{k-1-I_{k}}-\bar{z}_{\varDelta}(t)\right|^{q} \leqslant \\ 2^{q-1}\left(1-\frac{t-t_{k}}{\varDelta}\right)^{q} E\left|X_{k-1-I_{k}}-X_{k-1-I_{k-1}}\right|^{q}+2^{q-1} \cdot\\ \left(\frac{t-t_{k}}{\varDelta}\right)^{q} E\left|X_{k-1-I_{k}}-X_{k-I_{k}}\right|^{q} \leqslant 2^{q-1} \sup \limits_{-m \leqslant j \leqslant k} E \mid X_{j}- \\ \left.X_{j-1}\right|^{q} \leqslant C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right) \end{array} $ |
2) 当yΔ(t-δ(t))=Xk-Ik时,有
$ \begin{array}{l} \ \ \ \ \ \ \ \ E\left|\bar{y}_{\varDelta}(t-\delta(t))-\bar{z}_{\varDelta}(t)\right|^{q}=E\left|X_{k-I_{k}}-\bar{z}_{\varDelta}(t)\right|^{q} \leqslant\\ E\left|X_{k-1-I_{k}}-X_{k-1-I_{k-1}}\right|^{q} \leqslant \sup \limits_{-m \leqslant j \leqslant k} E\left|X_{j}-X_{j-1}\right|^{q} \leqslant C(q,\\ T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right)\end{array} $ |
3) 同理当yΔ(t-δ(t))=Xk+1-Ik时,有
$ \begin{gathered} \ \ \ \ \ \ \ \ E\left|\bar{y}_{\varDelta}(t-\delta(t))-\bar{z}_{\varDelta}(t)\right|^{q} \leqslant 3^{q-1} \sup \limits_{-m \leqslant j \leqslant k} E \mid X_{j}- \\ \left.X_{j-1}\right|^{q} \leqslant C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right) \end{gathered} $ |
由引理7, 结论得证。
2 主要结果与证明定理1 设H1~H5成立,则由式(8)定义的数值解xΔ(t)q阶矩强收敛到精确解x(t),即对任意的p≥2,q∈[2, p),有
证明 截断函数定义为FR(x, y)=fh-1(R)(x, y) 和GR(x, y)=gh-1(R)(x, y),取Δ充分小,易知对任意|x|∨|y|≤R≤h(Δ),FR(x, y)=fh-1(R)(x, y)=f(x, y)=fΔ(x, y),同理GR(x, y)=gh-1(R)(x, y)=g(x, y)=gΔ(x, y)。
设v(θ)=ξ(θ), θ∈[-τ, 0], 当t≥0时考虑如下中立型变时滞随机微分方程。
$ \begin{array}{l} \ \ \ \ \ \ \ \ \mathrm{d}[v(t)-u(v(t-\delta(t)))]=F_{R}(v(t), v(t- \\ \delta(t))) \mathrm{d} t+G_{R}(v(t), v(t-\delta(t))) \mathrm{d} B(t) \end{array} $ | (15) |
对任意固定的R, FR、GR满足全局Lipschtiz条件,故方程(15)有唯一的解v(t), t≥-τ,所以有
$ P\left(x\left(t \wedge \tau_{R}\right)=v\left(t \wedge \tau_{R}\right), \forall t \in[0, T]\right)=1 $ | (16) |
类似于方程(1)的数值解,可类似定义vΔ(t),
由解的唯一性,方程(1)、(15)对应的数值解满足
$ P\left(x_{\varDelta}\left(t \wedge \rho_{\varDelta, R}\right)=v_{\varDelta}\left(t \wedge \rho_{\varDelta, R}\right), \forall t \in[0, T]\right)=1 $ | (17) |
令l(t)=v(t)-u(v(t-δ(t))),lΔ(t)=vΔ(t)-u(v′Δ(t)),则
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|v(t)-v_{\varDelta}(t)\right|^{q} \leqslant\left(1+c_{1}\right)^{q-1} E\left|l(t)-l_{\varDelta}(t)\right|^{q}+ \\ &\left(\frac{1+c_{1}}{c_{1}}\right)^{q-1} \eta^{q} E\left|v(t-\delta(t))-\bar{v}_{\varDelta}^{\prime}(t)\right|^{q} \end{aligned} $ |
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|l(t)-l_{\varDelta}(t)\right|^{q} \leqslant 2^{q-1} T^{q-1} E \int_{0}^{t} \mid F_{R}(v(s), v(s- \\ &\delta(s)))-\left.F_{R}\left(\bar{v}_{\varDelta}(s), \bar{v}_{\varDelta}^{\prime}(s)\right)\right|^{q} \mathrm{~d} s+2^{q-1} T^{q}-1 E \int_{0}^{t} \\ &\left|G_{R}(v(s), v(s-\delta(s)))-G_{R}\left(\bar{v}_{\varDelta}(s), \bar{v}_{\varDelta}^{\prime}(s)\right)\right|^{q} \mathrm{~d} s \leqslant \\ &2^{q-1}\left(T^{q-1}+T^{q}-1\right) E \int_{0}^{t} L_{R}^{q}\left(\left|v(s)-\bar{v}_{\varDelta}(s)\right|^{q}+\mid v(s-\right. \\ &\left.\delta(s))-\left.\bar{v}_{\varDelta}^{\prime}(s)\right|^{q}\right) \mathrm{d} s \leqslant 2^{q-1}\left(T^{q-1}+T^{q}-1\right) L_{R}^{q}[E \\ &\int_{0}^{t}\left(\left|v(s)-v_{\varDelta}(s)+v_{\varDelta}(s)-\bar{v}_{\varDelta}(s)\right|^{q} \mathrm{~d} s+E \int_{0}^{t} \mid v(s-\right. \\ &\delta(s))-v_{\varDelta}(s-\delta(s))+v_{\varDelta}(s-\delta(s))-\bar{v}_{\varDelta}(s-\delta(s))+ \\ &\left.\bar{v}_{\varDelta}(s-\delta(s))-\left.\bar{v}_{\varDelta}^{\prime}(s)\right|^{q} \mathrm{~d} s\right] \end{aligned} $ |
根据引理5和引理8得
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|l(t)-l_{\varDelta}(t)\right|^{q} \leqslant C(q, T) L_{R}^{q} E \int_{0}^{t} \mid v(s)- \\ &\left.v_{\varDelta}(s)\right|^{q} \mathrm{~d} s+C(q, T) L_{R}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right) \end{aligned} $ | (18) |
同理可得
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|v(t-\delta(t))-v_{\varDelta}^{\prime}(t)\right|^{q} \leqslant\left(\frac{1+c_{2}}{c_{2}}\right)^{q-1} E \mid v(t- \\ &\delta(t))-\left.v_{\varDelta}(t-\delta(t))\right|^{q}+C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\right. \\ &\left.\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right) \end{aligned} $ |
取c1、c2充分大,使得
$ \begin{aligned} &\ \ \ \ \ \ \ \ \sup \limits_{s \leqslant t} E \quad\left|\quad v \quad(s)-v_{\varDelta} \quad(s) \quad\right|^{q} \leqslant \\ &\frac{C(q, T) L_{R}^{q} E \int_{0}^{t}\left|v(s)-v_{\varDelta}(s)\right|^{q} \mathrm{~d} s}{1-\left(\frac{1+c_{1}}{c_{1}}\right)^{q-1} \eta^{q}\left(\frac{1+c_{2}}{c_{2}}\right)^{q-1}}+ \\ &\frac{C(q, T) L_{R}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right)}{1-\left(\frac{1+c_{1}}{c_{1}}\right)^{q-1} \eta^{q}\left(\frac{1+c_{2}}{c_{2}}\right)^{q-1}} \end{aligned} $ | (19) |
易知将t替换成t∧θΔ,R,其中θΔ,R=τR∧θΔ,R, 式(19)仍成立。类似于文献[6]中引理4.1的证明, 由Gronwall引理得
$ \begin{aligned} &\ \ \ \ \ \ \ \ \sup \limits_{s \leqslant t} E\left|v\left(s \wedge \theta_{\varDelta, R}\right)-v_{\varDelta}\left(s \wedge \theta_{\varDelta, R}\right)\right|^{q} \leqslant C_{1} L_{R}^{q} \cdot \\ &\exp \left(C_{2} L_{R}^{q} T\right) \varDelta^{\frac{q}{2}} \end{aligned} $ |
其中,
$ C_{1}:=\frac{C(q, T)\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right)}{1-\left(\frac{1+c_{1}}{c_{1}}\right)^{q-1} \eta^{q}\left(\frac{1+c_{2}}{c_{2}}\right)^{q-1}} $ |
$ C_{2}=\frac{C(q, T)}{1-\left(\frac{1+c_{1}}{c_{1}}\right)^{q-1} \eta^{q}\left(\frac{1+c_{2}}{c_{2}}\right)^{q-1}} $ |
令h(Δ*)=L-1(LRexp(C2LRqT/q)),则∀Δ∈(0, Δ*),有
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|v\left(t \wedge \theta_{\varDelta, R}\right)-v_{\varDelta}\left(t \wedge \theta_{\varDelta, R}\right)\right|^{q} \leqslant C_{1} L_{R}^{q} \cdot \\ &\exp \left(C_{2} L_{R}^{q} T\right) \varDelta^{\frac{q}{2}} \leqslant C_{1} L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}} \end{aligned} $ |
由式(16)、(17)以及停时的定义可得
$ E\left|x\left(t \wedge \theta_{\varDelta, R}\right)-x_{\varDelta}\left(t \wedge \theta_{\varDelta, R}\right)\right|^{q} \leqslant C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}} $ |
$ E\left|x(T)-x_{\varDelta}(T)\right|^{q} \leqslant C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}} $ |
[1] |
MAO X R. The truncated Euler-Maruyama method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2015, 290: 370-384. DOI:10.1016/j.cam.2015.06.002 |
[2] |
HU L J, LI X Y, MAO X R. Convergence rate and stability of the truncated Euler-Maruyama method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2018, 337: 274-289. DOI:10.1016/j.cam.2018.01.017 |
[3] |
MILOŠEVIĆ M. Highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama method[J]. Mathematical and Computer Modelling, 2011, 54: 2235-2251. DOI:10.1016/j.mcm.2011.05.033 |
[4] |
GUO Q, MAO X R, YUE R X. The truncated Euler-Maruyama method for stochastic differential delay equations[J]. Numerical Algorithms, 2018, 78: 599-624. DOI:10.1007/s11075-017-0391-0 |
[5] |
LAN G Q, XIA F. Strong convergence rates of modified truncated EM method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2018, 334: 1-17. |
[6] |
LAN G Q, WANG Q S. Strong convergence rates of modified truncated EM methods for neutral stochastic differential delay equations[J]. Journal of Computational and Applied Mathematics, 2019, 362: 83-98. DOI:10.1016/j.cam.2019.05.021 |
[7] |
LAN G Q. Asymptotic exponential stability of modified truncated EM method for neutral stochastic differential delay equations[J]. Journal of Computational and Applied Mathematics, 2018, 340: 334-341. |
[8] |
MAO X R. Stochastic differential equations and applications[M]. 2nd ed. Chichester: Horwood Publishing, 2007.
|