文章快速检索     高级检索
  北京化工大学学报(自然科学版)  2021, Vol. 48 Issue (6): 123-128   DOI: 10.13543/j.bhxbzr.2021.06.016
0

引用本文  

王歌, 兰光强. 中立型变时滞随机微分方程数值解的强收敛性[J]. 北京化工大学学报(自然科学版), 2021, 48(6): 123-128. DOI: 10.13543/j.bhxbzr.2021.06.016.
WANG Ge, LAN GuangQiang. Strong convergence of numerical solutions of neutral stochastic differential equations with time-dependent delay[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2021, 48(6): 123-128. DOI: 10.13543/j.bhxbzr.2021.06.016.

基金项目

北京市自然科学基金(1192013)

第一作者

王歌, 女, 1996年生, 硕士生.

通信联系人

兰光强, E-mail: langq@mail.buct.edu.cn

文章历史

收稿日期:2021-05-10
中立型变时滞随机微分方程数值解的强收敛性
王歌 , 兰光强     
北京化工大学 数理学院, 北京 100029
摘要:讨论中立型变时滞随机微分方程改进的修正截断Euler-Maruyama(EM)方法的q阶矩强收敛性,并得到收敛速度。结果表明此方法适用于高度非线性的漂移项和扩散项,且相较于隐式的修正截断EM方法计算量更小,适用范围更广。
关键词中立型变时滞随机微分方程    改进的修正截断Euler-Maruyama(EM)方法    强收敛性    
Strong convergence of numerical solutions of neutral stochastic differential equations with time-dependent delay
WANG Ge , LAN GuangQiang     
College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
Abstract: Strong convergence of the modified truncated Euler-Maruyama method for stochastic differential equations with a time-dependent delay is discussed, and the convergence rate is obtained. This method can be applied to neutral stochastic differential delay equations (NSDDEs) with highly nonlinear drift and diffusion terms. Compared with the implicit modified truncated Euler-Maruyama method, the amount of calculation required is reduced and the application range is wider.
Key words: neutral stochastic differential equations with time-dependent delay    modified truncated Euler-Maruyama method    strong convergence    
引言

中立型时滞随机微分方程是描述诸如医学、生态学、经济学、物理学等学科中众多现象的一种重要工具。然而, 由于此类方程的复杂性, 虽然其应用广泛,但是解析解却很难得到, 因此研究其数值解以及数值解的收敛性很有必要。另一方面, 过程的当前状态依赖于其过去的状态, 但是这种依赖未必是常时滞的, 从而使得考虑变时滞情形具有重要的实际意义。Mao等[1-2]提出截断Euler-Maruyama(EM)方法,并对该方法得到的数值解的收敛性和稳定性进行了研究。Milošević[3]和Guo等[4]分别研究了时滞随机微分方程和中立型时滞随机微分方程数值解的收敛性。Lan等[5-7]提出了修正截断EM方法,并且得到典型随机微分方程和中立型常时滞随机微分方程的数值解的收敛速度和渐进稳定性。由于在变时滞情形下通常的修正截断方法会变为隐式格式,而相比于显式格式隐式格式通常计算量较大,因此本文将研究对应方程的显式格式(改进的修正截断EM方法)的收敛性及收敛速度。

1 基本假设、定义及重要引理

设(Ω, $\mathscr{F}$, {$\mathscr{F}_t$}t≥0, P)是一个完备的概率空间,考虑中立型变时滞随机微分方程为

$ \begin{array}{l} \ \ \ \ \ \ \ \ \mathrm{d}[x(t)-u(x(t-\delta(t)))]=f(x(t), x(t- \\ \delta(t))) \mathrm{d} t+g(x(t), x(t-\delta(t))) \mathrm{d} B(t) \end{array} $ (1)

初值满足:x0=ξ={ξ(θ), θ∈[-τ, 0]}∈ $C_{{\mathscr{F}_0}}^b$([-τ, 0];Rn), 其中f, g, u(f: Rn×RnRn, g: Rn×RnRnRn, u: RnRn) 均为可测函数。为得到本文主要结论,提出以下假设。

H1  对任意正整数R,存在正常数LR,使得∀x, x, y, yRn,且|x|∨|x|∨|y|∨|y|≤R,都有

$ \begin{aligned} &\ \ \ \ \ \ \ \ |f(x, y)-f(\bar{x}, \bar{y})| \vee|g(x, y)-g(\bar{x}, \bar{y})| \leqslant \\ &L_{R}(|x-\bar{x}|+|y-\bar{y}|) \end{aligned} $

H2  存在常数η∈(0, 1),对∀x, yRn,都有|u(x)-u(y)|≤η|x-y|,当u(0)=0时,|u(x)|≤η|x|。

H3  函数δ: R+R+连续可微,且满足|δ′(t)| < δ < 1。

H4(Khasminskii-type条件)  存在常数p≥2和K>0,使得对于∀x, yRn, a∈(0, 1],有

$ \begin{aligned} &\ \ \ \ \ \ \ \ \left\langle x-a u\left(\frac{y}{a}\right), f(x, y)\right\rangle+\frac{p-1}{2}|g(x, y)|^{2} \leqslant K(1+ \\ &\left.|x|^{2}+|y|^{2}\right) \end{aligned} $

H5  存在常数Cξ,对于p≥2有

$ E \sup \limits_{t, s \in[-\tau, 0],|s-t| \leqslant \varDelta}|\xi(s)-\xi(t)|^{p} \leqslant C_{\xi} \varDelta^{\frac{p}{2}} $

需注意的是由文献[3]可知,当H1~H4满足时,方程(1)的解x(t)在初值x0的条件下存在且唯一,并且对T>0有$\mathop {{\rm{sup}}}\limits_{ - \mathit{\tau } \le t \le T} E|x(t){|^p} < \infty $

定义停时τR=inf {t≥0, |x(t)|≥R}, infϕ=∞,则$P\left({{\mathit{\tau }_R} \le T} \right) \le \frac{{C'}}{{{R^p}}}$

Δ∈(0, 1)为步长且τ=mΔ,对于充分小的Δ*>0,令h(Δ)是正的严格递减函数h: (0, Δ*]→(0, ∞)且满足

$ \lim\limits _{\varDelta \rightarrow 0} h(\varDelta)=\infty, \lim\limits _{\varDelta \rightarrow 0} L_{h(\varDelta)}^{2} \varDelta=0 $ (2)

由文献[6]知若给定LR,则函数h一定存在。

对任意的Δ>0,定义修正截断函数fΔ

$ f_{\varDelta}(x, y)= \begin{cases}f(x, y), & |x| \vee|y| \leqslant h(\varDelta) \\ a f\left(x_{1}, y_{1}\right), & |x| \vee|y|>h(\varDelta)\end{cases} $

式中,$a = \frac{{|x| \vee |y|}}{{h(\mathit{\Delta })}}, {x_1} = \frac{x}{a}, {y_1} = \frac{y}{a}$

下面定义改进的修正截断EM格式。令tk=kΔ, N=T/ΔXk=ξ(tk), -mk≤0, Xm-1: =Xm,若k=0, 1, …, N,令

$ \begin{array}{l} \ \ \ \ \ \ \ \ X_{k+1}=u\left(X_{k-I_{k}}\right)+X_{k}-u\left(X_{k-1-I_{k-1}}\right)+f_{\varDelta}\left(X_{k},\right. \\ \left.X_{k-I_{k}}\right) \varDelta+{g_{\varDelta}}\left(X_{k}, X_{k-I_{k}}\right) \varDelta B_{k} \end{array} $ (3)

式中,gΔ定义与fΔ相同,其中${I_k} = \left[{\frac{{\mathit{\delta }\left({{t_k}} \right)}}{\mathit{\Delta }}} \right], k \ge 0$, I-1: =I0,[x]为x的整数部分。

为定义连续格式,令

$ {\bar{x}}_{\varDelta}(t)=\sum\limits_{k=0}^{N-1} X_{k} I_{\left[t_{k}, t_{k+1}\right)}(t) $ (4)
$ \bar{y}_{\varDelta}(t)=\sum\limits_{k=0}^{N-1} X_{k-I_{k}} I_{\left[t_{k}, t_{k+1}\right)}(t) $ (5)
$ \begin{aligned} &\ \ \ \ \ \ \ \ Z_{k}(t)=\left(1-\frac{t-t_{k}}{\varDelta}\right) \bar{y}_{\varDelta}\left(t_{k-1}\right)+\frac{t-t_{k}}{\varDelta} \bar{y}_{\varDelta}\left(t_{k}\right), t \in \\ &{\left[t_{k}, t_{k+1}\right)} \end{aligned} $ (6)
$ \bar{z}_{\varDelta}(t)=\sum\limits_{k=0}^{N-1} Z_{k}(t) I_{\left[t_{k}, t_{k+1}\right)}(t) $ (7)

定义xΔ(t)=ξ(t), t∈[-τ, 0],对∀t∈[0, T],令

$ \begin{aligned} &\ \ \ \ \ \ \ \ x_{\varDelta}(t)=\xi(0)+u\left(\bar{z}_{\varDelta}(t)\right)-u\left(x_{\varDelta}\left(-\varDelta-I_{-1} \varDelta\right)\right)+ \\ &\int_{0}^{t} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{0}^{t} g_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \cdot \\ &\mathrm{d} B(s) \end{aligned} $ (8)

对∀t∈[tk, tk+1),上述格式也可写成如下形式

$ \begin{array}{l} \ \ \ \ \ \ \ \ x_{\varDelta}(t)=x_{\varDelta}\left(t_{k}\right)+u\left(Z_{k}(t)\right)-u\left(x _ { \varDelta } \left(t_{k-1}-I_{k-1} \cdot\right.\right.\\ \varDelta))+\int_{t_{k}}^{t} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{t_{k}}^{t} g_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right.\\ \left.\bar{y}_{\varDelta}(s)\right) \mathrm{d} B(s) \end{array} $ (9)

容易验证xΔ(tk)=xΔ(tk)=Xk, -mkN

引理1  假设H1成立,那么对于任意固定的Δ>0,有

$ \begin{aligned} &\ \ \ \ \ \ \ \ \left|f_{\varDelta}(x, y)-f_{\varDelta}(\bar{x}, \bar{y})\right| \vee\left|g_{\varDelta}(x, y)-g_{\varDelta}(\bar{x}, \bar{y})\right| \leqslant \\ &5 L_{h(\varDelta)}(|x-\bar{x}|+|y-\bar{y}|) \end{aligned} $

证明参见文献[7]中引理3.1。

引理2  假设H4成立,则有

$ \begin{aligned} &\ \ \ \ \ \ \ \ \left\langle x-u(y), f_{\varDelta}(x, y)\right\rangle+\frac{p-1}{2}\left|g_{\varDelta}(x, y)\right|^{2} \leqslant 2 K(1+ \\ &\left.|x|^{2}+|y|^{2}\right) \end{aligned} $

证明参见文献[7]中引理3.2。

引理3  对于∀t≥0,有

$ E\left|\bar{z}_{\varDelta}(t)\right|^{p} \leqslant \sup\limits _{-\tau \leqslant s \leqslant t} E\left|x_{\varDelta}(s)\right|^{p} $

证明  不妨设t∈[tk, tk+1),由式(6)、(7)可知

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|\bar{z}_{\varDelta}(t)\right|^{p}=E\left|Z_{k}(t)\right|^{p}=E \left| \bar{y}_{\varDelta}\left(t_{k-1}\right)+\frac{t-t_{k}}{\varDelta}\right. \\ &\left.\left(\bar{y}_{\varDelta}\left(t_{k}\right)-\bar{y}_{\varDelta}\left(t_{k-1}\right)\right)\right|^{p} \leqslant \max \left\{E\left|\bar{y}_{\varDelta}\left(t_{k-1}\right)\right|^{p},\right. \\ &\left.E\left|\bar{y}_{\varDelta}\left(t_{k}\right)\right|^{p}\right\} \leqslant \sup \limits_{-\tau \leqslant s \leqslant t} E\left|x_{\varDelta}(s)\right|^{p} \end{aligned} $

引理4  假设H1、H2、H3、H5成立,且$\mathit{\eta } < \frac{1}{2}$,则存在常数C(p, T)>0使得对任意的Δ∈(0, Δ*),有

$ \begin{aligned} &\ \ \ \ \ \ \ \ \sup \limits_{k \leqslant\left[\frac{t}{\varDelta}\right]} E\left|x_{\varDelta}\left(t_{k}\right)-x_{\varDelta}\left(t_{k-1}\right)\right|^{p} \leqslant C(p, T)\left(L_{h(\varDelta)}^{p}\right. \\ &\left.\varDelta^{\frac{p}{2}} \sup \limits_{s \leqslant t} E\left|x_{\varDelta}(s)\right|^{p}+\varDelta^{\frac{p}{2}}\right) \end{aligned} $

证明  由式(9)易知,

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}\left(t_{k}\right)-x_{\varDelta}\left(t_{k-1}\right)\right|^{p}=E \mid u\left(\bar{z}_{\varDelta}\left(t_{k}\right)\right)-u\left(\bar{z}_{\varDelta}\right. \\ &\left.\left(t_{k-1}\right)\right)+\int_{t_{k-1}}^{t_{k}} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{t_{k-1}}^{t_{k}} g_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right. \\ &\left.\bar{y}_{\varDelta}(s)\right)\left.\mathrm{d} B(s)\right|^{p} \leqslant(1+c)^{p-1} \eta^{p} E\left|\bar{z}_{\varDelta}\left(t_{k}\right)-\bar{z}_{\varDelta}\left(t_{k-1}\right)\right|^{p}+ \\ &\left(\frac{1+c}{c}\right)^{p-1} E\left[\left| \int_{t_{k-1}}^{t_{k}} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{t_{k-1}}^{t_{k}} g_{\varDelta}\right.\right. \\ &\left.\left.\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} B(s)\right|^{p}\right] \end{aligned} $

又由式(6)、(7)可知

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|\bar{z}_{\varDelta}\left(t_{k}\right)-\bar{z}_{\varDelta}\left(t_{k-1}\right)\right|^{p}=E\left|\bar{y}_{\varDelta}\left(t_{k-1}\right)-\bar{y}_{\varDelta}\left(t_{k-2}\right)\right|^{p}= \\ &E\left|X_{k-1-I_{k-1}}-X_{k-2-I_{k-2}}\right|^{p} \end{aligned} $

根据[x]的定义和假设H3可知

$ \begin{array}{l} \ \ \ \ \ \ \ \ k-1-I_{k-1}-\left(k-2-I_{k-2}\right)=1+I_{k-2}-I_{k-1} \leqslant \\ 1+\left(\left[\frac{\delta\left(t_{k-2}\right)-\delta\left(t_{k-1}\right)}{\varDelta}\right]+1\right) \leqslant 1+\left(\left[\frac{\left|\delta^{\prime}(\theta)\right| \varDelta}{\varDelta}\right]+\right.\\ 1)=2 \end{array} $

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|\bar{z}_{\varDelta}\left(t_{k}\right)-\bar{z}_{\varDelta}\left(t_{k-1}\right)\right|^{p} \leqslant 2^{p-1} \sup\limits _{-m \leqslant i \leqslant k} E \mid x_{\varDelta}\left(t_{i}\right)- \\ &\left.x_{\varDelta}\left(t_{i-1}\right)\right|^{p} \end{aligned} $

又由引理1,所以得到

$ \begin{array}{l} \ \ \ \ \ \ \ \ \sup \limits_{k \leqslant\left[\frac{t}{\varDelta}\right]} E\left|x_{\varDelta}\left(t_{k}\right)-x_{\varDelta}\left(t_{k-1}\right)\right|^{p} \leqslant[2(1+c)]^{p-1} \eta^{p} \\ \sup \limits_{i \leqslant\left[\frac{t}{\varDelta}\right]} E\left|x_{\varDelta}\left(t_{i}\right)-x_{\varDelta}\left(t_{i-1}\right)\right|^{p}+\left(\frac{1+c}{c}\right)^{p-1} \sup \limits_{k \leqslant\left[\frac{t}{\varDelta}\right]} E \\ {\left[\left| \int_{t_{k-1}}^{t_{k}} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{t_{k-1}}^{t_{k}} g_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right.\right.\right.} \\ \left.\left.\bar{y}_{\varDelta}(s)\right)\left.\mathrm{d} B(s)\right|^{p}\right] \leqslant[2(1+c)]^{p-1} \eta^{p} \sup \limits_{i \leqslant\left[\frac{i}{\varDelta}\right]} E \mid x_{\varDelta}\left(t_{i}\right)-\\ \left.x_{\varDelta}\left(t_{i}\right)\right|^{p}+\left(\frac{3(1+c)}{c}\right)^{p-1}\left(\varDelta^{p}+\varDelta^{\frac{p}{2}}\right) L_{h(\varDelta)}^{p} 2 \sup \limits_{s \leqslant t} E \\ \left|x_{\varDelta}(s)\right|^{p}+\left(\frac{3(1+c)}{c}\right)^{p-1}\left(|f(0,0)|^{p} \varDelta^{p}+|g(0,0)|^{p} \varDelta^{\frac{p}{2}}\right) \end{array} $

由于$\mathit{\eta } < \frac{1}{2}$,故可取c充分小使得[2(1+c)]p-1ηp < 1,结论得证。

引理5  设引理4中的条件均成立,则

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-\bar{x}_{\varDelta}(t)\right|^{p} \leqslant C(p, T)\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \sup \limits_{s \leqslant t} E\right. \\ &\left.\left|x_{\varDelta}(s)\right|^{p}+\varDelta^{\frac{p}{2}}\right) \end{aligned} $

证明  不妨设t∈[tk, tk+1)。由式(9)得

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-\bar{x}_{\varDelta}(t)\right|^{p}=E \left| u\left(Z_{k}(t)\right)-u\left(x _ { \varDelta } \left(t_{k-1}-\right.\right.\right. \\ &\left.\left.I_{k-1} \varDelta\right)\right)+\int_{t_{k}}^{t} f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} s+\int_{t_{k}}^{t} g_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right. \\ &\left.\bar{y}_{\varDelta}(s)\right)\left.\mathrm{d} B(s)\right|^{p} \leqslant\left(1+c_{0}\right)^{p-1} \eta^{p} E \mid Z_{k}(t)-x_{\varDelta}\left(t_{k-1}-\right. \\ &\left.I_{k-1} \varDelta\right)\left.\right|^{p}+\left[\frac{2\left(1+c_{0}\right)}{c_{0}}\right]^{p-1} \times E\left[\left| \int_{t_{k}}^{t} f_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right.\right.\right. \\ &\left.\left.\bar{y}_{\varDelta}(s)\right)\left.\mathrm{d} s\right|^{p}+\left|\int_{t_{k}}^{t} g_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right) \mathrm{d} B(s)\right|^{p}\right] \end{aligned} $

注意到

$ \begin{aligned} &\ \ \ \ \ \ \ \ \left|Z_{k}(t)-x_{\varDelta}\left(t_{k-1}-I_{k-1} \varDelta\right)\right|=\left|\left(1-\frac{t-t_{k}}{\varDelta}\right)\right. \\ &\left.X_{k-1-I_{k-1}}+\frac{t-t_{k}}{\varDelta} X_{k-I_{k}}-X_{k-1-I_{k-1}}\right|\leqslant| X_{k-I_{k}}- \\ &X_{k-1-I_{k-1}} \mid \end{aligned} $

从而由引理4得

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-\bar{x}_{\varDelta}(t)\right|^{p} \leqslant C(p, T)\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \sup \limits_{s \leqslant t} E\right. \\ &\left.\left|x_{\varDelta}(s)\right|^{p}+\varDelta^{\frac{p}{2}}\right) \end{aligned} $

根据引理5不难得到

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|\bar{y}_{\varDelta}(t)-\bar{z}_{\varDelta}(t)\right|^{p} \leqslant C(p, T)\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \sup \limits_{s \leqslant t} E\right. \\ &\left.\left|x_{\varDelta}(s)\right|^{p}+\varDelta^{\frac{p}{2}}\right) \end{aligned} $

引理6  假设H1~H5均成立,则

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-u\left(\bar{z}_{\varDelta}(t)\right)\right|^{p} \leqslant C(p, T)\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}}\cdot\right. \\ &\left.\int_{0}^{t} \sup \limits_{r \leqslant s} E\left|x_{\varDelta}(r)\right|^{p} \mathrm{~d} s+\varDelta^{\frac{p}{2}}\right)+C(p, \eta, T) \end{aligned} $

证明  由伊藤公式得

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-u\left(\bar{z}_{\varDelta}(t)\right)\right|^{p} \leqslant E \left| \xi(0)-u\left(x _ { \varDelta } \left(-\varDelta-\right.\right.\right. \\ &\left.\left.I_{-1} \varDelta\right)\right)\left.\right|^{p}+p E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2}\left[\bar{x}_{\varDelta}(s)-\right. \\ &\left\langle u\left(\bar{y}_{\varDelta}(s)\right), f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right)\right\rangle+\frac{p-1}{2} \mid g_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right. \\ &\left.\left.\bar{y}_{\varDelta}(s)\right)\left.\right|^{2}\right] \mathrm{d} s+E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2}\left\langle x_{\varDelta}(s)-\right. \\ &\left.\bar{x}_{\varDelta}(s), f_{\varDelta}\left(\bar{x}_{\varDelta}(s), \bar{y}_{\varDelta}(s)\right)\right\rangle \mathrm{d} s+E \int_{0}^{t} \mid x_{\varDelta}(s)- \\ &\left.u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2}\left\langle u\left(\bar{y}_{\varDelta}(s)\right)-u\left(\bar{z}_{\varDelta}(s)\right), f_{\varDelta}\left(\bar{x}_{\varDelta}(s),\right.\right. \\ &\left.\left.\bar{y}_{\varDelta}(s)\right)\right\rangle \mathrm{d} s=: I_{1}+I_{2}+I_{3}+I_{4} \end{aligned} $

下面分别估计I1I2I3I4这4项。

$ \begin{aligned} &\ \ \ \ \ \ \ \ I_{1} \leqslant 2^{p-1}\left(E|\xi(0)|^{p}+\eta^{p} E\left|x_{\varDelta}\left(-\varDelta-I_{-1} \varDelta\right)\right|^{p}\right) \leqslant \\ &C(p, \eta) \sup \limits_{-\tau \leqslant s \leqslant 0} E|\xi(s)|^{p} \end{aligned} $ (10)

由引理2和Young不等式得

$ \begin{aligned} &\ \ \ \ \ \ \ \ I_{2} \leqslant p K E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2} \times(1+ \\ &\left.\left|\bar{x}_{\varDelta}(s)\right|^{2}+\left|\bar{y}_{\varDelta}(s)\right|^{2}\right) \mathrm{d} s \leqslant C(p, \eta)\left(E \int_{0}^{t} \mid x_{\varDelta}(s)-\right. \\ &\left.\left.u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p} \mathrm{~d} s+\int_{0}^{t} \sup \limits_{r \leqslant s} E\left|x_{\varDelta}(r)\right|^{p} \mathrm{~d} s\right)+C(p, \eta, T) \end{aligned} $ (11)

由引理1和Young不等式得

$ \begin{aligned} &\ \ \ \ \ \ \ \ I_{3} \leqslant p E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2}\left(|f(0,0)|^{2}+\right. \\ &\left.L_{h(\varDelta)}^{2}\left|x_{\varDelta}(s)-\bar{x}_{\varDelta}(s)\right|^{2}+\left|\bar{x}_{\varDelta}(s)\right|^{2}+\left|\bar{y}_{\varDelta}(s)\right|^{2}\right) \mathrm{d} s \leqslant \\ &C(p, \eta) E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p} \mathrm{~d} s+C(p, T) \\ &\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \int_{0}^{t} \sup \limits_{r \leqslant s} E\left|x_{\varDelta}(r)\right|^{p} \mathrm{~d} s+\varDelta^{\frac{p}{2}}\right) \end{aligned} $ (12)

同理,由引理5和Young不等式可得

$ \begin{aligned} &\ \ \ \ \ \ \ \ I_{4} \leqslant p \eta E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p-2}\left(|f(0,0)|^{2}+\right. \\ &\left.L_{h(\varDelta)}^{2}\left|\bar{y}_{\varDelta}(s)-\bar{z}_{\varDelta}(s)\right|^{2}+\left|\bar{x}_{\varDelta}(s)\right|^{2}+\left|\bar{y}_{\varDelta}(s)\right|^{2}\right) \mathrm{d} s \leqslant \\ &C(p, \eta) E \int_{0}^{t}\left|x_{\varDelta}(s)-u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p} \mathrm{~d} s+C(p, T)\\ &\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \int_{0}^{t} \sup \limits_{r \leqslant s} E\left|x_{\varDelta}(r)\right|^{p} \mathrm{~d} s+\varDelta^{\frac{p}{2}}\right) \end{aligned} $ (13)

由式(10)~(13)得

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)-u\left(\bar{z}_{\varDelta}(t)\right)\right|^{p} \leqslant C(p, \eta) E \int_{0}^{t} \mid x_{\varDelta}(s)- \\ &\left.u\left(\bar{z}_{\varDelta}(s)\right)\right|^{p} \mathrm{~d} s+C(p, T)\left(L_{h(\varDelta)}^{p} \varDelta^{\frac{p}{2}} \int_{0}^{t} \sup \limits_{r \leqslant s} E\left|x_{\varDelta}(r)\right|^{p} \mathrm{~d} s+\right. \\ &\left.\varDelta^{\frac{p}{2}}\right)+C(p, \eta, T) \end{aligned} $

再根据Gronwall引理[8]即可得证。

引理7  假设H1~H5均成立,且$\mathit{\eta } < \frac{1}{2}$, p>2, 则存在0 < Δ0 < Δ*C(p, T)>0,使得对任意Δ∈(0, Δ0),有$\mathop {{\rm{sup}}}\limits_{0 < \mathit{\Delta } < {\mathit{\Delta }_0}} \mathop {{\rm{sup}}}\limits_{0 < t < T} E{\left| {{x_\mathit{\Delta }}(t)} \right|^p} \le C < \infty $, ∀T>0。

定义停时ρΔ, R=inf{t≥0, |xΔ(t)|≥R},则$P\left({{\mathit{\rho }_{\mathit{\Delta }, R}} \le T} \right) \le \frac{C}{{{R^p}}}$

证明

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|x_{\varDelta}(t)\right|^{p}=E\left|x_{\varDelta}(t)-u\left(z_{\varDelta}(t)\right)+u\left(z_{\varDelta}(t)\right)\right|^{p} \leqslant \\ &\left(1+c^{\prime}\right)^{p-1} E\left|x_{\varDelta}(t)-u\left(z_{\varDelta}(t)\right)\right|^{p}+\left(\frac{1+c^{\prime}}{c^{\prime}}\right)^{p-1} \eta^{p} \cdot \\ &E\left|z_{\varDelta}(t)\right|^{p} \end{aligned} $

c′充分大时,${\left({\frac{{1 + c'}}{{c'}}} \right)^{p - 1}}{\mathit{\eta }^p} < 1$,由引理3、引理6和Gronwall引理得

$ \sup \limits_{0<\varDelta<\varDelta_{0} } \sup \limits_{0<t<T}E\left|x_{\varDelta}(t)\right|^{p} \leqslant C<\infty, \forall T>0 $ (14)

显然将式(14)中的xΔ(t)换成xΔ(tρΔ, R)不等式仍成立。

再由RpP(ρΔ, RT)≤E(|xΔ(TρΔ, R)|p)≤C可得$P\left({{\mathit{\rho }_{\mathit{\Delta }, R}} \le T} \right) \le \frac{C}{{{R^p}}}$

引理8  假设引理7中的假设均成立,则对∀t∈[tk, tk+1)和充分小的Δ(< 1),2 < q < p,有

$ E\left|\bar{y}_{\varDelta}(t-\delta(t))-\bar{z}_{\varDelta}(t)\right|^{q} \leqslant C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}} $

证明  显然tδ(t)∈[tk-1IkΔ, tk+1Ik+1·Δ),由H3,可得

$ \begin{aligned} &\ \ \ \ \ \ \ \ t_{k+1}-I_{k+1} \varDelta-\left(t_{k-1}-I_{k} \varDelta\right)=2 \varDelta+\left(I_{k} \varDelta-I_{k+1} \varDelta\right) \leqslant \\ &3 \varDelta+\left[\left|\delta^{\prime}(\theta)\right|\right] \varDelta=3 \varDelta \end{aligned} $

yΔ(tδ(t))可能取Xk-1-IkXkIkXk+1-Ik,由引理4可得如下结果。

1) 当yΔ(tδ(t))=Xk-1-Ik时,有

$ \begin{array}{l} \ \ \ \ \ \ \ \ E\left|\bar{y}_{\varDelta}(t-\delta(t))-\bar{z}_{\varDelta}(t)\right|^{q}=E\left|X_{k-1-I_{k}}-\bar{z}_{\varDelta}(t)\right|^{q} \leqslant \\ 2^{q-1}\left(1-\frac{t-t_{k}}{\varDelta}\right)^{q} E\left|X_{k-1-I_{k}}-X_{k-1-I_{k-1}}\right|^{q}+2^{q-1} \cdot\\ \left(\frac{t-t_{k}}{\varDelta}\right)^{q} E\left|X_{k-1-I_{k}}-X_{k-I_{k}}\right|^{q} \leqslant 2^{q-1} \sup \limits_{-m \leqslant j \leqslant k} E \mid X_{j}- \\ \left.X_{j-1}\right|^{q} \leqslant C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right) \end{array} $

2) 当yΔ(tδ(t))=XkIk时,有

$ \begin{array}{l} \ \ \ \ \ \ \ \ E\left|\bar{y}_{\varDelta}(t-\delta(t))-\bar{z}_{\varDelta}(t)\right|^{q}=E\left|X_{k-I_{k}}-\bar{z}_{\varDelta}(t)\right|^{q} \leqslant\\ E\left|X_{k-1-I_{k}}-X_{k-1-I_{k-1}}\right|^{q} \leqslant \sup \limits_{-m \leqslant j \leqslant k} E\left|X_{j}-X_{j-1}\right|^{q} \leqslant C(q,\\ T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right)\end{array} $

3) 同理当yΔ(tδ(t))=Xk+1-Ik时,有

$ \begin{gathered} \ \ \ \ \ \ \ \ E\left|\bar{y}_{\varDelta}(t-\delta(t))-\bar{z}_{\varDelta}(t)\right|^{q} \leqslant 3^{q-1} \sup \limits_{-m \leqslant j \leqslant k} E \mid X_{j}- \\ \left.X_{j-1}\right|^{q} \leqslant C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right) \end{gathered} $

由引理7, 结论得证。

2 主要结果与证明

定理1  设H1~H5成立,则由式(8)定义的数值解xΔ(t)q阶矩强收敛到精确解x(t),即对任意的p≥2,q∈[2, p),有$\mathop {\sup }\limits_{0 \le t \le T} E{\left| {{x_\mathit{\Delta }}(t) - x(t)} \right|^q} \le {C_{q, T}}L_{h(\mathit{\Delta })}^q \cdot {\mathit{\Delta }^{\frac{q}{2}}}$

证明  截断函数定义为FR(x, y)=fh-1(R)(x, y) 和GR(x, y)=gh-1(R)(x, y),取Δ充分小,易知对任意|x|∨|y|≤Rh(Δ),FR(x, y)=fh-1(R)(x, y)=f(x, y)=fΔ(x, y),同理GR(x, y)=gh-1(R)(x, y)=g(x, y)=gΔ(x, y)。

v(θ)=ξ(θ), θ∈[-τ, 0], 当t≥0时考虑如下中立型变时滞随机微分方程。

$ \begin{array}{l} \ \ \ \ \ \ \ \ \mathrm{d}[v(t)-u(v(t-\delta(t)))]=F_{R}(v(t), v(t- \\ \delta(t))) \mathrm{d} t+G_{R}(v(t), v(t-\delta(t))) \mathrm{d} B(t) \end{array} $ (15)

对任意固定的R, FRGR满足全局Lipschtiz条件,故方程(15)有唯一的解v(t), t≥-τ,所以有

$ P\left(x\left(t \wedge \tau_{R}\right)=v\left(t \wedge \tau_{R}\right), \forall t \in[0, T]\right)=1 $ (16)

类似于方程(1)的数值解,可类似定义vΔ(t),${{\bar v}_\mathit{\Delta }}(t) = \sum\limits_{k = 0}^{N - 1} {{V_k}} {I_{\left[{{t_k}, {t_{k + 1}}} \right)}}(t)$${{\mathit{\bar v'}}_\mathit{\Delta }}(t) = \sum\limits_{k = 0}^{N - 1} {{V_{k - {I_k}}}} $· ${I_{\left[{{t_k}, {t_{k + 1}}} \right)}}(t), {{\bar v'}_k}(t) = \left({1 - \frac{{t - {t_k}}}{\mathit{\Delta }}} \right){{\bar v'}_\mathit{\Delta }}\left({{t_{k - 1}}} \right) + \frac{{t - {t_k}}}{\mathit{\Delta }}{{\bar v'}_\mathit{\Delta }}\left({{t_k}} \right)$$t \in \left[{{t_k}, {t_{k + 1}}} \right), {{\mathit{\bar v'}}_\mathit{\Delta }}(t) = \sum\limits_{k = 0}^{N - 1} {{{\bar v'}_k}} (t){I_{\left[{{t_k}, {t_{k + 1}}} \right)}}(t)$

由解的唯一性,方程(1)、(15)对应的数值解满足

$ P\left(x_{\varDelta}\left(t \wedge \rho_{\varDelta, R}\right)=v_{\varDelta}\left(t \wedge \rho_{\varDelta, R}\right), \forall t \in[0, T]\right)=1 $ (17)

l(t)=v(t)-u(v(tδ(t))),lΔ(t)=vΔ(t)-u(vΔ(t)),则

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|v(t)-v_{\varDelta}(t)\right|^{q} \leqslant\left(1+c_{1}\right)^{q-1} E\left|l(t)-l_{\varDelta}(t)\right|^{q}+ \\ &\left(\frac{1+c_{1}}{c_{1}}\right)^{q-1} \eta^{q} E\left|v(t-\delta(t))-\bar{v}_{\varDelta}^{\prime}(t)\right|^{q} \end{aligned} $
$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|l(t)-l_{\varDelta}(t)\right|^{q} \leqslant 2^{q-1} T^{q-1} E \int_{0}^{t} \mid F_{R}(v(s), v(s- \\ &\delta(s)))-\left.F_{R}\left(\bar{v}_{\varDelta}(s), \bar{v}_{\varDelta}^{\prime}(s)\right)\right|^{q} \mathrm{~d} s+2^{q-1} T^{q}-1 E \int_{0}^{t} \\ &\left|G_{R}(v(s), v(s-\delta(s)))-G_{R}\left(\bar{v}_{\varDelta}(s), \bar{v}_{\varDelta}^{\prime}(s)\right)\right|^{q} \mathrm{~d} s \leqslant \\ &2^{q-1}\left(T^{q-1}+T^{q}-1\right) E \int_{0}^{t} L_{R}^{q}\left(\left|v(s)-\bar{v}_{\varDelta}(s)\right|^{q}+\mid v(s-\right. \\ &\left.\delta(s))-\left.\bar{v}_{\varDelta}^{\prime}(s)\right|^{q}\right) \mathrm{d} s \leqslant 2^{q-1}\left(T^{q-1}+T^{q}-1\right) L_{R}^{q}[E \\ &\int_{0}^{t}\left(\left|v(s)-v_{\varDelta}(s)+v_{\varDelta}(s)-\bar{v}_{\varDelta}(s)\right|^{q} \mathrm{~d} s+E \int_{0}^{t} \mid v(s-\right. \\ &\delta(s))-v_{\varDelta}(s-\delta(s))+v_{\varDelta}(s-\delta(s))-\bar{v}_{\varDelta}(s-\delta(s))+ \\ &\left.\bar{v}_{\varDelta}(s-\delta(s))-\left.\bar{v}_{\varDelta}^{\prime}(s)\right|^{q} \mathrm{~d} s\right] \end{aligned} $

根据引理5和引理8得

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|l(t)-l_{\varDelta}(t)\right|^{q} \leqslant C(q, T) L_{R}^{q} E \int_{0}^{t} \mid v(s)- \\ &\left.v_{\varDelta}(s)\right|^{q} \mathrm{~d} s+C(q, T) L_{R}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right) \end{aligned} $ (18)

同理可得

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|v(t-\delta(t))-v_{\varDelta}^{\prime}(t)\right|^{q} \leqslant\left(\frac{1+c_{2}}{c_{2}}\right)^{q-1} E \mid v(t- \\ &\delta(t))-\left.v_{\varDelta}(t-\delta(t))\right|^{q}+C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\right. \\ &\left.\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right) \end{aligned} $

c1c2充分大,使得${\left({\frac{{1 + {c_1}}}{{{c_1}}}} \right)^{q - 1}}\; \; {\mathit{\eta }^q}$·${\left({\frac{{1 + {c_2}}}{{{c_2}}}} \right)^{q - 1}} < 1$, 则

$ \begin{aligned} &\ \ \ \ \ \ \ \ \sup \limits_{s \leqslant t} E \quad\left|\quad v \quad(s)-v_{\varDelta} \quad(s) \quad\right|^{q} \leqslant \\ &\frac{C(q, T) L_{R}^{q} E \int_{0}^{t}\left|v(s)-v_{\varDelta}(s)\right|^{q} \mathrm{~d} s}{1-\left(\frac{1+c_{1}}{c_{1}}\right)^{q-1} \eta^{q}\left(\frac{1+c_{2}}{c_{2}}\right)^{q-1}}+ \\ &\frac{C(q, T) L_{R}^{q} \varDelta^{\frac{q}{2}}\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right)}{1-\left(\frac{1+c_{1}}{c_{1}}\right)^{q-1} \eta^{q}\left(\frac{1+c_{2}}{c_{2}}\right)^{q-1}} \end{aligned} $ (19)

易知将t替换成tθΔR,其中θΔR=τRθΔR, 式(19)仍成立。类似于文献[6]中引理4.1的证明, 由Gronwall引理得

$ \begin{aligned} &\ \ \ \ \ \ \ \ \sup \limits_{s \leqslant t} E\left|v\left(s \wedge \theta_{\varDelta, R}\right)-v_{\varDelta}\left(s \wedge \theta_{\varDelta, R}\right)\right|^{q} \leqslant C_{1} L_{R}^{q} \cdot \\ &\exp \left(C_{2} L_{R}^{q} T\right) \varDelta^{\frac{q}{2}} \end{aligned} $

其中,

$ C_{1}:=\frac{C(q, T)\left(\sup \limits_{r \leqslant t} E\left|x_{\varDelta}(r)\right|^{q}+\varDelta^{\frac{q}{2}}\right)}{1-\left(\frac{1+c_{1}}{c_{1}}\right)^{q-1} \eta^{q}\left(\frac{1+c_{2}}{c_{2}}\right)^{q-1}} $
$ C_{2}=\frac{C(q, T)}{1-\left(\frac{1+c_{1}}{c_{1}}\right)^{q-1} \eta^{q}\left(\frac{1+c_{2}}{c_{2}}\right)^{q-1}} $

h(Δ*)=L-1(LRexp(C2LRqT/q)),则∀Δ∈(0, Δ*),有

$ \begin{aligned} &\ \ \ \ \ \ \ \ E\left|v\left(t \wedge \theta_{\varDelta, R}\right)-v_{\varDelta}\left(t \wedge \theta_{\varDelta, R}\right)\right|^{q} \leqslant C_{1} L_{R}^{q} \cdot \\ &\exp \left(C_{2} L_{R}^{q} T\right) \varDelta^{\frac{q}{2}} \leqslant C_{1} L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}} \end{aligned} $

由式(16)、(17)以及停时的定义可得

$ E\left|x\left(t \wedge \theta_{\varDelta, R}\right)-x_{\varDelta}\left(t \wedge \theta_{\varDelta, R}\right)\right|^{q} \leqslant C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}} $

再由标准的截断程序[1, 5]和引理7即得

$ E\left|x(T)-x_{\varDelta}(T)\right|^{q} \leqslant C(q, T) L_{h(\varDelta)}^{q} \varDelta^{\frac{q}{2}} $
参考文献
[1]
MAO X R. The truncated Euler-Maruyama method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2015, 290: 370-384. DOI:10.1016/j.cam.2015.06.002
[2]
HU L J, LI X Y, MAO X R. Convergence rate and stability of the truncated Euler-Maruyama method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2018, 337: 274-289. DOI:10.1016/j.cam.2018.01.017
[3]
MILOŠEVIĆ M. Highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama method[J]. Mathematical and Computer Modelling, 2011, 54: 2235-2251. DOI:10.1016/j.mcm.2011.05.033
[4]
GUO Q, MAO X R, YUE R X. The truncated Euler-Maruyama method for stochastic differential delay equations[J]. Numerical Algorithms, 2018, 78: 599-624. DOI:10.1007/s11075-017-0391-0
[5]
LAN G Q, XIA F. Strong convergence rates of modified truncated EM method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2018, 334: 1-17.
[6]
LAN G Q, WANG Q S. Strong convergence rates of modified truncated EM methods for neutral stochastic differential delay equations[J]. Journal of Computational and Applied Mathematics, 2019, 362: 83-98. DOI:10.1016/j.cam.2019.05.021
[7]
LAN G Q. Asymptotic exponential stability of modified truncated EM method for neutral stochastic differential delay equations[J]. Journal of Computational and Applied Mathematics, 2018, 340: 334-341.
[8]
MAO X R. Stochastic differential equations and applications[M]. 2nd ed. Chichester: Horwood Publishing, 2007.