Janus CoSTe单层膜在Li-S电池中的应用研究

温新竹, 曾凤生, 彭玉颜

北京化工大学学报(自然科学版) ›› 2023, Vol. 50 ›› Issue (2) : 8-16.

PDF(5465 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年5月7日 星期三
Email Alert  RSS
PDF(5465 KB)
北京化工大学学报(自然科学版) ›› 2023, Vol. 50 ›› Issue (2) : 8-16. DOI: 10.13543/j.bhxbzr.2023.02.002
化学与化学工程

Janus CoSTe单层膜在Li-S电池中的应用研究

  • 温新竹, 曾凤生, 彭玉颜
作者信息 +

Application of Janus CoSTe monolayers in Li-S batteries

  • WEN XinZhu, ZENG FengSheng, PENG YuYan
Author information +
文章历史 +

摘要

开发新的亲硫催化材料是解决锂硫电池正极多硫化锂存在的严重的穿梭效应和缓慢的动力学转化等问题的有效方案。构建了一种潜在的锂硫电池正极锚定材料—Janus过渡金属二硫属化物CoSTe单层膜,采用第一性原理计算发现多硫化物Li2Sn团簇在CoSTe单层膜表面吸附能适中(0.88~2.85 eV),大于石墨烯表面和有机电解液中的吸附能,且高阶Li2Sn团簇的表面吸附在一定范围内得到了优化;Li2Sn团簇的分解不太容易自发地在CoSTe膜层上发生;Li2Sn团簇在CoSTe单层膜表面的扩散有其微观上的“通道”;Li2S的解离能优于石墨烯表面,CoSTe单层膜比石墨烯表面更利于硫还原反应的顺利进行;CoSTe单层膜的金属特性在吸附Li2Sn团簇后得以保留。综上,理论上Janus CoSTe单层膜表面在锂硫电池电极中具备优异的电化学性能,具有开发应用的潜力和价值。

Abstract

Developing new thiophilic catalytic materials is an effective way to solve the problems of the serious shuttle effect and slow kinetic transformation of the lithium polysulfide positive electrode in lithium-sulfur batteries. A potential cathode anchoring material for lithium-sulfur batteries based on a Janus transition metal disulfide CoSTe monolayer has been investigated. First-principles calculations show that the adsorption energy of polysulfide Li2Sn clusters on the surface of the CoSTe monolayer is between 0.88 and 2.85 eV. These values are higher than those for adsorption on the surface of graphene and for organic electrolytes. The surface adsorption of high-order Li2Sn was optimized in a certain range. The analysis showed that: the decomposition of Li2Sn groups does not occur spontaneously on the CoSTe monolayer; the diffusion of Li2Sn clusters on the surface of a CoSTe monolayer has its own microscopic “channel”; the dissociation energy of Li2S is better than that for graphene, and the dissociation energy of the CoSTe monolayer is better than that of graphene; the metallic properties of the CoSTe monolayer are retained after the adsorption of Li2Sn clusters. The results show that the surface of the Janus CoSTe monolayer has an excellent theoretical electrochemical performance as a lithium-sulfur battery electrode and suggests it has potential for practical application in batteries.

关键词

第一性原理 / Li2Sn团簇 / Janus CoSTe单层膜 / 锚定材料 / 锂硫电池

Key words

first-principles calculations / Li2Sn clusters / Janus CoSTe monolayer / anchoring materials / lithium-sulfur battery

引用本文

导出引用
温新竹, 曾凤生, 彭玉颜. Janus CoSTe单层膜在Li-S电池中的应用研究[J]. 北京化工大学学报(自然科学版), 2023, 50(2): 8-16 https://doi.org/10.13543/j.bhxbzr.2023.02.002
WEN XinZhu, ZENG FengSheng, PENG YuYan. Application of Janus CoSTe monolayers in Li-S batteries[J]. Journal of Beijing University of Chemical Technology, 2023, 50(2): 8-16 https://doi.org/10.13543/j.bhxbzr.2023.02.002

参考文献

[1] EFTEKHARI A, KIM D W. Cathode materials for lithium-sulfur batteries: a practical perspective[J]. Journal of Materials Chemistry A, 2017, 5(34): 17734-17776.
[2] WILD M, O'NEILL L, ZAHNG T, et al. Lithium sulfur batteries, a mechanistic review[J]. Energy & Environmental Science, 2015, 8(12): 3477-3494.
[3] MANTHIRAM A, FU Y Z, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787.
[4] LV X S, WEI W, YANG H C, et al. Group IV monochalcogenides MX (M=Ge, Sn; X=S, Se) as chemical anchors of polysulfides for lithium-sulfur batteries[J]. Chemistry—A European Journal, 2018, 24(43): 11193-11199.
[5] ZHANG Q F, WANG Y P, SEH Z W, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries[J]. Nano Letters, 2015, 15(6): 3780-3786.
[6] JI X L, NAZAR L F. Advances in Li-S batteries[J]. Journal of Materials Chemistry, 2010, 20(44): 9821-9826.
[7] MACFARLANE D R, FORSYTH M, HOWLETT P C, et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage[J]. Nature Reviews Materials, 2016, 1: 15005.
[8] PENG H J, HUANG J Q, ZHANG Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46(17): 5237-5288.
[9] ZHONG Y, XIA X H, DENG S J, et al. Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(1): 1701110.
[10] CHEN K N, CAO J, LU Q Q, et al. Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries[J]. Nano Research, 2018, 11(3): 1345-1357.
[11] YUAN Z, PENG H J, HUANG J Q, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(39): 6105-6112.
[12] PEI F, AN T H, ZANG J, et al. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries[J]. Advanced Energy Materials, 2016, 6(8): 1502539.
[13] CHANG Z, DING B, DOU H, et al. Hierarchically porous multilayered carbon barriers for high-performance Li-S batteries[J]. Chemistry—A European Journal, 2018, 24(15): 3768-3775.
[14] LI J, GUO J Q, DENG J N, et al. Enhanced electrochemical performance of lithium-sulfur batteries by using mesoporous TiO2 spheres as host materials for sulfur impregnation[J]. Materials Letters, 2017, 189: 188-191.
[15] ZHANG Y, WANG L Z, ZHANG A Q, et al. Novel V2O5/S composite cathode material for the advanced secondary lithium batteries[J]. Solid State Ionics, 2010, 181(17-18): 835-838.
[16] FABER M S, LUKOWSKI M A, DING Q, et al. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis[J]. The Journal of Physical Chemistry C, 2014, 118(37): 21347-21356.
[17] LI H, WEN X Z, SHAO F, et al. Interlayer-expanded MoS2 vertically anchored on graphene via C—O—S bonds for superior sodium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 877: 160280.
[18] ZHANG J, JIA S, KHOLMANOV I, et al. Janus monolayer transition-metal dichalcogenides[J]. ACS Nano, 2017, 11(8): 8192-8198.
[19] CAI H F, GUO Y F, GAO H J, et al. Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: a first-principles study[J]. Nano Energy, 2019, 56: 33-39.
[20] WANG J, SHU H B, ZHAO T F, et al. Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides[J]. Physical Chemistry Chemical Physics, 2018, 20(27): 18571-18578.
[21] XU Y G, OU X D, ZHANG X W. Theoretical study of two-dimensional α-tellurene with pseudo-heterospecies as a promising elemental anchoring material for lithium-sulfur batteries[J]. The Journal of Physical Chemistry C, 2021, 125(8): 4623-4631.
[22] MUHAMMAD I D, AWANG M, MAMAT O, et al. First-principles calculations of the structural, mechanical and thermodynamics properties of cubic zirconia[J]. World Journal of Nano Science and Engineering, 2014, 4(2): 97-103.
[23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[24] JIA X F, HOU Q Y, XU Z C, et al. Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle[J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 128-135.
[25] FISCHER T H, ALMLÖF J. General methods for geometry and wave function optimization[J]. The Journal of Physical Chemistry, 1992, 96(24): 9768-9774.
[26] ZHOU T H, LV W, LI J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7): 1694-1703.
[27] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[28] ZHANG H N, WANG S H, WANG Y Y, et al. Borophosphene: a potential anchoring material for lithium-sulfur batteries[J]. Applied Surface Science, 2021, 562: 150157.
[29] WU W A, ZHANG Y M, GUO Y H, et al. Exploring anchoring performance of InP3 monolayer for lithium-sulfur batteries: a first-principles study[J]. Applied Surface Science, 2020,526: 146717.
[30] ZHOU G M, TIAN H Z, JIN Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proceedings of the National Academy of Sciences, 2017, 114(5): 840-845.
[31] OLSEN R A, KROES G J, HENKELMAN G, et al. Comparison of methods for finding saddle points without knowledge of the final states[J]. The Journal of Chemical Physics, 2004, 121(20): 9776-9792.
[32] DU Z Z, CHEN X J, HU W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2019, 141(9): 3977-3985.

基金

国家自然科学基金(11675001);福建省科技厅引导性项目(2021H0029)
PDF(5465 KB)

1125

Accesses

0

Citation

Detail

段落导航
相关文章

/