基于改进量子遗传优化支持向量机的配电网故障分类

罗程浩, 赵启承, 魏云冰, 李思成

北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (6) : 110-118.

PDF(1200 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月11日 星期五
Email Alert  RSS
PDF(1200 KB)
北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (6) : 110-118. DOI: 10.13543/j.bhxbzr.2022.06.013
机电工程和信息科学

基于改进量子遗传优化支持向量机的配电网故障分类

  • 罗程浩1, 赵启承2, 魏云冰1, 李思成1
作者信息 +

Distribution network fault classification based on an improved quantum genetic optimization support vector machine

  • LUO ChengHao1, ZHAO QiCheng2, WEI YunBing1, LI SiCheng1
Author information +
文章历史 +

摘要

针对传统方法在解决现代配电网故障分类时存在的求解速度慢、分类精度差的问题,提出一种结合量子遗传算法的支持向量机配电网故障分类方法。首先采集故障信号并进行S变换处理,将处理结果的均方根与均值作为特征量,以提高特征量辨识度;其次在量子遗传算法的种群更新策略中引入自适应动态旋转角,避免算法在早期陷入局部收敛,增加算法的调参精度。以IEEE33节点配电网模型为研究对象的实验结果表明,所提的特征量提取方法有效提高了支持向量机的故障分类精度,改进后的量子遗传算法通过为支持向量机寻到更优参数从而进一步提高了故障的判别精度和分类速度,验证了方法的有效性与准确性。

Abstract

A support vector machine distribution network fault classification method combined with a quantum genetic algorithm is proposed as a way of overcoming the problems of slow solution speed and poor classification accuracy of traditional methods in modern distribution network fault classification. The fault signal is first collected and processed by S-transform, and the root mean square and mean value of the processing results are taken as the characteristic quantities to improve the identification degree of the characteristic quantities. An adaptive dynamic rotation angle is then introduced into the population update strategy of the quantum genetic algorithm in order to prevent the algorithm falling into local convergence in the early stages and increase the parameter adjustment accuracy of the algorithm. The experimental results for an IEEE 33 node distribution network model show that the proposed feature extraction method effectively increases the fault classification accuracy of support vector machines. The improved quantum genetic algorithm further improves the fault identification accuracy and classification speed by finding better parameters for the support vector machine, which verifies the effectiveness and accuracy of the method.

关键词

故障分类 / 特征量提取 / 支持向量机 / 量子遗传算法 / 自适应动态旋转角

Key words

fault classification / feature extraction / support vector machine / quantum genetic algorithm / adaptive dynamic rotation angle

引用本文

导出引用
罗程浩, 赵启承, 魏云冰, 李思成. 基于改进量子遗传优化支持向量机的配电网故障分类[J]. 北京化工大学学报(自然科学版), 2022, 49(6): 110-118 https://doi.org/10.13543/j.bhxbzr.2022.06.013
LUO ChengHao, ZHAO QiCheng, WEI YunBing, LI SiCheng. Distribution network fault classification based on an improved quantum genetic optimization support vector machine[J]. Journal of Beijing University of Chemical Technology, 2022, 49(6): 110-118 https://doi.org/10.13543/j.bhxbzr.2022.06.013

参考文献

[1] MORA-FLÓREZ J, CORMANE-ANGARITA J, ORDÓÑEZ-PLATA G. k-means algorithm and mixture distributions for locating faults in power systems[J]. Electric Power Systems Research, 2009, 79(5): 714-721.
[2] MIRZAEI M, A AB KADIR M Z, MOAZAMI E, et al. Review of fault location methods for distribution power system[J]. Australian Journal of Basic and Applied Sciences, 2009, 3(3): 2670-2676.
[3] 徐先峰, 徐晨杰, 张艳波, 等. 基于行波特征分类的有源配电网故障定位[J]. 重庆大学学报, 2022(11):59-68. XU X F, XU C J, ZHANG Y B, et al. Fault location of active distribution network based on traveling wave feature classification[J]. Journal of Chongqing University, 2022(11):59-68. (in Chinese)
[4] 洪翠, 付宇泽, 郭谋发, 等. 基于卷积深度置信网络的配电网故障分类方法[J]. 电力自动化设备, 2019, 39(11): 64-70. HONG C, FU Y Z, GUO M F, et al. Fault classification method based on CDBN for distribution network[J]. Electric Power Automation Equipment, 2019, 39(11): 64-70. (in Chinese)
[5] 张麒. 基于深度学习的智能配电网故障识别与分类方法研究[D]. 北京: 北京理工大学, 2018. ZHANG Q. Research on fault identification and classifi-cation method of smart distribution network with deep learning[D]. Beijing: Beijing Institute of Technology, 2018. (in Chinese)
[6] 杨启洪, 秦川, 刘杰荣, 等. 基于对比歧化和深度置信网络的配电网故障类型识别[J]. 电网与清洁能源, 2019, 35(2): 52-57. YANG Q H, QIN C, LIU J R, et al. Fault identification of distribution network based on contrast disproportionate algorithm and deep belief network[J]. Power System and Clean Energy, 2019, 35(2): 52-57. (in Chinese)
[7] GILANIFAR M, WANG H, CORDOVA J, et al. Fault classification in power distribution systems based on limited labeled data using multi-task latent structure learning[J]. Sustainable Cities and Society, 2021, 73: 103094.
[8] 詹惠瑜, 刘科研, 盛万兴, 等. 有源配电网故障诊断与定位方法综述及展望[J/OL]. 高电压技术. (2022-02-25). DOI: 10. 13336/j. 1003-6520. hve. 20211604. ZHAN H Y, LIU K Y, SHENG W X, et al. Literature review and prospects of fault diagnosis in active distribution network[J/OL]. High Voltage Engineering. (2022-02-25). DOI: 10. 13336/j. 1003-6520. hve. 20211604. (in Chinese)
[9] WU Y H. Statistical learning theory[J]. Technometrics, 1999, 41(4): 377-378.
[10] 何旭, 姜宪国, 张沛超, 等. 基于SVM的小样本条件下继电保护可靠性参数估计[J]. 电网技术, 2015, 39(5): 1432-1437. HE X, JIANG X G, ZHANG P C, et al. SVM based pa-rameter estimation of relay protection reliability with small samples[J]. Power System Technology, 2015, 39(5): 1432-1437. (in Chinese)
[11] 洪翠, 付宇泽, 郭谋发, 等. 改进多分类支持向量机的配电网故障识别方法[J]. 电子测量与仪器学报, 2019, 33(1): 7-15. HONG C, FU Y Z, GUO M F, et al. Identification method of distribution network faults based on improved multi-classification support vector machine[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(1): 7-15. (in Chinese)
[12] 胡伟, 李勇, 曹一家, 等. 基于LOF和SVM的智能配电网故障辨识方法[J]. 电力自动化设备, 2016, 36(6): 7-12. HU W, LI Y, CAO Y J, et al. Fault identification based on LOF and SVM for smart distribution network[J]. Electric Power Automation Equipment, 2016, 36(6): 7-12. (in Chinese)
[13] 刘科研, 董伟杰, 肖仕武, 等. 基于电压数据SVM分类的有源配电网故障判别及定位[J]. 电网技术, 2021, 45(6): 2369-2379. LIU K Y, DONG W J, XIAO S W, et al. Fault identification and location of active distribution network based on SVM classification of voltage data[J]. Power System Technology, 2021, 45(6): 2369-2379. (in Chinese)
[14] CHO M Y, THOM H T. Fault diagnosis for distribution networks using enhanced support vector machine classi-fier with classical multidimensional scaling[J]. Journal of Electrical Systems, 2017, 13(3): 415-428.
[15] 高伟, 陈伟凡, 杨耿杰, 等. 基于奇异值分解和多级支持向量机的配电网故障类型识别[J]. 电子测量与仪器学报, 2018, 32(2): 62-71. GAO W, CHEN W F, YANG G J, et al. Fault type identification for distribution network based on singular value decomposition and multi-level support vector machine[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(2): 62-71. (in Chinese)
[16] 吉兴全, 陈金硕, 张玉敏, 等. 基于CNN-SVM的配电网故障分类研究[J]. 智慧电力, 2022, 50(1): 94-100. JI X Q, CHEN J S, ZHANG Y M, et al. Fault classification in distribution network based on CNN-SVM[J]. Smart Power, 2022, 50(1): 94-100. (in Chinese)
[17] SRINIVASA RAO T C, TULASI RAM S S, SUBRAH-MANYAM J B V. Neural network with adaptive evolutionary learning and cascaded support vector machine for fault localization and diagnosis in power distribution system[J]. Evolutionary Intelligence, 2022, 15(2): 1171-1182.
[18] 魏学强, 秦晶晶, 万森林, 等. 广义S变换在地震数据处理中的应用与展望[J]. 大地测量与地球动力学, 2017, 37(3): 327-330. WEI X Q, QIN J J, WAN S L, et al. The applications and prospects of generalized S transformation in seismic data processing[J]. Journal of Geodesy and Geodynamics, 2017, 37(3): 327-330. (in Chinese)
[19] 洪涛, 黄志奇, 杨畅. 涡轮泵实时故障检测的快速支持向量机算法[J]. 仪器仪表学报, 2012, 33(8): 1786-1792. HONG T, HUANG Z Q, YANG C. Fast support vector machine algorithm for turbopump real-time fault detection[J]. Chinese Journal of Scientific Instrument, 2012, 33(8): 1786-1792. (in Chinese)
[20] 王欣, 王德隽. 离散信号的近均值滤波[J]. 电子学报, 1989, 17(4): 7-12. WANG X, WANG D J. A nearest-mean filter of discrete signals[J]. Acta Electronica Sinica, 1989, 17(4): 7-12. (in Chinese)
[21] 陈涛, 雍龙泉, 邓方安, 等. 基于差分进化算法的支持向量机参数选择[J]. 计算机工程与应用, 2011, 47(5): 24-26. CHEN T, YONG L Q, DENG F A, et al. Parameters se-lection of support vector machine based on differential evolution[J]. Computer Engineering and Applications, 2011, 47(5): 24-26. (in Chinese)
[22] 王波, 刘树林, 蒋超, 等. 基于量子遗传算法优化RVM的滚动轴承智能故障诊断[J]. 振动与冲击, 2015, 34(17): 207-212. WANG B, LIU S L, JIANG C, et al. Rolling bearings' intelligent fault diagnosis based on RVM optimized with quantum genetic algorithm [J]. Journal of Vibration and Shock, 2015, 34(17): 207-212. (in Chinese)
[23] 杨凤生, 熊波, 蔡广林, 等. 基于数据分析的配电网故障数据特征变量提取[J]. 电力大数据, 2018, 21(3): 22-26. YANG F S, XIONG B, CAI G L, et al. Characteristic variable extraction of fault data in distribution feeder based on data analysis[J]. Power Systems and Big Data, 2018, 21(3): 22-26. (in Chinese)
[24] 易吉良, 彭建春, 谭会生. S变换在电能质量扰动分析中的应用综述[J]. 电力系统保护与控制, 2011, 39(3): 141-147. YI J L, PENG J C, TAN H S. A summary of S transform applied to power quality disturbances analysis[J]. Power System Protection and Control, 2011, 39(3): 141-147. (in Chinese)
[25] HAN K H, KIM J H. Genetic quantum algorithm and its application to combinatorial optimization problem[C]// Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla, 2000: 1354-1360.
[26] 周晟. 基于改进量子遗传算法的机械臂轨迹优化[J]. 组合机床与自动化加工技术, 2021(6): 33-37. ZHOU S. Manipulator based on improved quantum ge-netic algorithm trajectory optimization[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2021(6): 33-37. (in Chinese)
[27] 董明刚, 王宁, 艾兵, 等. 基于差分进化的优化方法及应用[M]. 北京: 人民邮电出版社, 2019. DONG M G, WANG N, AI B, et al. Differential evolu-tion-based optimization methods and applications[M]. Beijing: Posts and Telecom Press, 2019. (in Chinese)

基金

国网浙江省电力有限公司科技项目(5211DS16001Y);国家自然科学基金(51507157)
PDF(1200 KB)

1454

Accesses

0

Citation

Detail

段落导航
相关文章

/