生物炭对厌氧消化强化作用的研究进展

沈如梦, 蔡凡凡, 宋超, 金琰, 张思, 陈畅, 刘广青

北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (6) : 1-13.

PDF(2223 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月5日 星期六
Email Alert  RSS
PDF(2223 KB)
北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (6) : 1-13. DOI: 10.13543/j.bhxbzr.2022.06.001
综述

生物炭对厌氧消化强化作用的研究进展

  • 沈如梦, 蔡凡凡, 宋超, 金琰, 张思, 陈畅, 刘广青
作者信息 +

Research progress in biochar-enhanced anaerobic digestion

  • SHEN RuMeng, CAI FanFan, SONG Chao, JIN Yan, ZHANG Si, CHEN Chang, LIU GuangQing
Author information +
文章历史 +

摘要

厌氧消化作为当前应用于有机废弃物减量化、无害化和资源化处理的重要技术,具有良好的经济、环境和社会效益,但其在实际应用中存在酸化、氨氮抑制、微生物增殖缓慢等问题,导致底物消化不彻底、系统运行不稳定以及产气效率低下。生物炭是一种低成本、可再生的碳质材料,具有比表面积高、导电性强、元素组成和表面官能团丰富等特性,可有效强化厌氧消化过程。然而,有关生物炭强化厌氧消化的作用机制,尤其是强化机制与生物炭理化特性间的联系尚缺乏系统梳理与深入剖析,限制了生物炭在实际工程中的应用。本文综述了生物炭对厌氧消化的作用效果、强化途径以及不同制备条件对生物炭理化性质的影响,以期为生物炭强化厌氧消化过程的机理研究提供理论指导,为未来推进生物炭强化厌氧消化技术的规模化及工程化应用提供借鉴。

Abstract

Anaerobic digestion (AD) is an established technology to realize treatment and recycling of organic waste, which has great social, environmental and economic benefits. However, the excessive accumulation of volatile fatty acids and ammonia nitrogen during the AD process results in inhibition of microbial activity, which leads to problems such as incomplete substrate digestion, unstable system operation and low biogas production efficiency. Biochar is a low-cost and renewable carbon material with high specific surface area, varied elemental composition, abundant surface functional groups and good conductivity which has the capability to effectively enhance AD. However, the mechanism of biochar-enhanced AD processes—especially the relationship between the mechanism and the physicochemical properties of the biochar—is not well understood and this limits the application of biochar in practical engineering. This review summarizes the effects of biochar on AD, the strengthening pathways and the influence of different preparation conditions on its physicochemical properties. This not only provides theoretical guidelines for future mechanistic studies of biochar, but should also promote the large-scale engineering application of biochar-enhanced AD technology.

关键词

生物炭 / 厌氧消化 / 理化性质 / 缓冲能力

Key words

biochar / anaerobic digestion / physicochemical property / buffer capacity

引用本文

导出引用
沈如梦, 蔡凡凡, 宋超, 金琰, 张思, 陈畅, 刘广青. 生物炭对厌氧消化强化作用的研究进展[J]. 北京化工大学学报(自然科学版), 2022, 49(6): 1-13 https://doi.org/10.13543/j.bhxbzr.2022.06.001
SHEN RuMeng, CAI FanFan, SONG Chao, JIN Yan, ZHANG Si, CHEN Chang, LIU GuangQing. Research progress in biochar-enhanced anaerobic digestion[J]. Journal of Beijing University of Chemical Technology, 2022, 49(6): 1-13 https://doi.org/10.13543/j.bhxbzr.2022.06.001

参考文献

[1] 王健,隋斌,程红胜,等. 我国不同区域农业废弃物厌氧消化及资源化技术模式构建及其评价研究[J]. 中国沼气,2021,39(4):3-11. WANG J, SUI B, CHENG H S, et al. Model construction and evaluation of agricultural waste anaerobic digestion and resource utilization technologies in different regions of China[J]. China Biogas, 2021, 39(4): 3-11. (in Chinese)
[2] SHEN J, ZHANG J Y, WANG W, et al. Assessment of pretreatment effects on anaerobic digestion of switchgrass: economics-energy-environment (3E) analysis[J]. Industrial Crops and Products, 2020, 145: 111957.
[3] GEETA G S, RAGHAVENDRA S, REDDY T K R. Increase in biogas production from bovine excreta by addition of various inert materials[J]. Agricultural Wastes, 1986, 17(2): 153-156.
[4] OGWANG I, KASEDDE H, NABUUMA B, et al. Characterization of biogas digestate for solid biofuel production in Uganda[J]. Scientific African, 2021, 12: e00735.
[5] AMIN F R, HUANG Y, HE Y F, et al. Biochar applications and modern techniques for characterization[J]. Clean Technologies and Environmental Policy, 2016, 18(5): 1457-1473.
[6] 马超然,张绪超,王朋,等. 生物炭理化性质对其反应活性的影响[J]. 环境化学,2019,38(11):2425-2434. MA C R, ZHANG X C, WANG P, et al. Effect of physical and chemical properties of biochar on its reactivity[J]. Environmental Chemistry, 2019, 38(11): 2425-2434. (in Chinese)
[7] LIANG Y, QIU L, GUO X H, et al. Start-up performance of chicken manure anaerobic digesters amended with biochar and operated at different temperatures[J]. Nature Environment and Pollution Technology, 2017, 16(2): 615-621.
[8] PAN J T, MA J Y, LIU X X, et al. Effects of different types of biochar on the anaerobic digestion of chicken manure[J]. Bioresource Technology, 2019, 275: 258-265.
[9] MA J Y, PAN J T, QIU L, et al. Biochar triggering multipath methanogenesis and subdued propionic acid accumulation during semi-continuous anaerobic digestion[J]. Bioresource Technology, 2019, 293: 122026.
[10] YANG S, CHEN Z Q, WEN Q X. Impacts of biochar on anaerobic digestion of swine manure: methanogenesis and antibiotic resistance genes dissemination[J]. Bioresource Technology, 2021, 324: 124679.
[11] 许彩云,靳红梅,常志州,等. 麦秸生物炭添加对猪粪中温厌氧发酵产气特性的影响[J]. 农业环境科学学报,2016,35(6): 1167-1172. XU C Y, JIN H M, CHANG Z Z, et al. Effect of biochar pyrolyzed from wheat straws at different temperatures on biogas production characteristics of pig manure during mesophilic digestion[J]. Journal of Agro-Environment Science, 2016, 35(6): 1167-1172. (in Chinese)
[12] JANG H M, CHOI Y K, KAN E. Effects of dairy manure-derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure[J]. Bioresource Technology, 2018, 250: 927-931.
[13] 张振,杨红,尹芳,等. 核桃壳生物炭对厌氧干发酵的影响[J]. 云南农业大学学报(自然科学),2020,35(5):885-891. ZHANG Z, YANG H, YIN F, et al. Effect of walnut shell biochar on dry anaerobic fermentation[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(5): 885-891. (in Chinese)
[14] CUI Y X, MAO F J, ZHANG J X, et al. Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: cell viability and methanogenic pathways[J]. Chemosphere, 2021, 272: 129863.
[15] SUGIARTO Y, SUNYOTO N M S, ZHU M M, et al. Effect of biochar addition on microbial community and methane production during anaerobic digestion of food wastes: the role of minerals in biochar[J]. Bioresource Technology, 2021, 323: 124585.
[16] LI Q, XU M J, WANG G J, et al. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment[J]. Bioresource Technology, 2018, 249: 1009-1016.
[17] 荆勇,冯晶,赵立欣,等. 木屑生物炭对秸秆和牛粪厌氧发酵产甲烷性能的影响[J]. 环境工程,2021,39(1):154-160. JING Y, FENG J, ZHAO L X, et al. Effect of sawdust biochar on anaerobic fermentation of straw and cow mannure for methane production[J]. Environmental Engineering, 2021, 39(1): 154-160. (in Chinese)
[18] CHIAPPERO M, BERRUTI F, MAŠEK O, et al. Analysis of the influence of activated biochar properties on methane production from anaerobic digestion of waste activated sludge[J]. Biomass and Bioenergy, 2021, 150: 106129.
[19] TSUI T H, ZHANG L, LIM E Y, et al. Timing of biochar dosage for anaerobic digestion treating municipal leachate: altered conversion pathways of volatile fatty acids[J]. Bioresource Technology, 2021, 335: 125283.
[20] SHARMA B, SUTHAR S. Enriched biogas and biofertilizer production from Eichhornia weed biomass in cow dung biochar-amended anaerobic digestion system[J]. Environmental Technology & Innovation, 2021, 21: 101201.
[21] MA H Y, HU Y, KOBAYASHI T, et al. The role of rice husk biochar addition in anaerobic digestion for sweet sorghum under high loading condition[J]. Biotechnology Reports, 2020, 27: e00515.
[22] 李丹妮,张克强,梁军锋,等. 三种添加剂对猪粪厌氧干发酵的影响[J]. 农业环境科学学报,2019,38(8):1777-1785. LI D N, ZHANG K Q, LIANG J F, et al. Solid-state anaerobic digestion of pig manure with three kinds of additives[J]. Journal of Agro-Environment Science, 2019, 38(8): 1777-1785. (in Chinese)
[23] ZHAO W X, YANG H Z, HE S F, et al. A review of biochar in anaerobic digestion to improve biogas production: performances, mechanisms and economic assessments[J]. Bioresource Technology, 2021, 341: 125797.
[24] AMBAYE T G, RENE E R, NIZAMI A S, et al. Beneficial role of biochar addition on the anaerobic digestion of food waste: a systematic and critical review of the operational parameters and mechanisms[J]. Journal of Environmental Management, 2021, 290: 112537.
[25] LUZ F C, CORDINER S, MANNI A, et al. Biochar characteristics and early applications in anaerobic digestion-a review[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 2892-2909.
[26] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488-3497.
[27] 潘君廷,马俊怡,邱凌,等. 生物炭介导鸡粪厌氧消化性能研究[J]. 中国环境科学,2016, 36(9):2716-2721. PAN J T, MA J Y, QIU L, et al. The performance of biochar-mediated anaerobic digestion of chicken manure[J]. China Environmental Science, 2016, 36(9): 2716-2721. (in Chinese)
[28] MUMME J, SROCKE F, HEEG K, et al. Use of biochars in anaerobic digestion[J]. Bioresource Technology, 2014, 164: 189-197.
[29] 宋柳莹. 鸡粪厌氧发酵过程中的氨抑制机理及抑制恢复策略研究[D]. 济南:山东大学, 2020. SONG L Y. Study on the mechanism of ammonia inhibition and recovery strategies in the process of anaerobic digestion of chicken manure[D]. Jinan: Shandong University, 2020. (in Chinese)
[30] CHENG Q P, XU C X, HUANG W W, et al. Improving anaerobic digestion of piggery wastewater by alleviating stress of ammonia using biochar derived from rice straw[J]. Environmental Technology & Innovation, 2020, 19: 100948.
[31] MA J Y, CHEN F F, XUE S X, et al. Improving anaerobic digestion of chicken manure under optimized biochar supplementation strategies[J]. Bioresource Technology, 2021, 325: 124697.
[32] XU D F, CAO J M, LI Y X, et al. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: a case study on ammonium adsorption capacity[J]. Waste Management, 2019, 87: 652-660.
[33] HUANG H M, XIAO X M, YAN B, et al. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent[J]. Journal of Hazardous Materials, 2010, 175(1-3): 247-252.
[34] TAN X F, LIU Y G, ZENG G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125: 70-85.
[35] 刘春软,童巧,李玉成,等. 生物炭负载Fe3O4对猪粪厌氧消化中重金属Cu、Zn形态的影响[J]. 环境污染与防治,2019, 41(11):1291-1296, 1303. LIU C R, TONG Q, LI Y C, et al. Effect of Fe3O4-loaded biochar on heavy metals Cu and Zn speciation in anaerobic digestion of pig manure[J]. Environmental Pollution & Control, 2019, 41(11): 1291-1296, 1303. (in Chinese)
[36] FERMOSO F G, BARTACEK J, JANSEN S, et al. Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application[J]. Science of the Total Environment, 2009, 407(12): 3652-3667.
[37] QI Q X, SUN C, ZHANG J X, et al. Internal enhancement mechanism of biochar with graphene structure in anaerobic digestion: the bioavailability of trace elements and potential direct interspecies electron transfer[J]. Chemical Engineering Journal, 2021, 406: 126833.
[38] JIANG Q, ZHANG C, WU P, et al. Algae biochar enhanced methanogenesis by enriching specific methanogens at low inoculation ratio during sludge anaerobic digestion[J]. Bioresource Technology, 2021, 338: 125493.
[39] 黄玲艳,刘星,周顺桂. 微生物直接种间电子传递:机制及应用[J]. 土壤学报,2018, 55(6):1313-1324. HUANG L Y, LIU X, ZHOU S G. Direct interspecies electron transfer of microbes: mechanism and application[J]. Acta Pedologica Sinica, 2018, 55(6): 1313-1324. (in Chinese)
[40] STAMS A J M, PLUGGE C M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea[J]. Nature Reviews Microbiology, 2009, 7(8): 568-577.
[41] WANG J F, ZHAO Z Q, ZHANG Y B. Enhancing anaerobic digestion of kitchen wastes with biochar: link between different properties and critical mechanisms of promoting interspecies electron transfer[J]. Renewable Energy, 2021, 167: 791-799.
[42] WANG G J, LI Q, GAO X, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: performance and associated mechanisms[J]. Bioresource Technology, 2018, 250: 812-820.
[43] JIANG Q, CHEN Y D, YU S K, et al. Effects of citrus peel biochar on anaerobic co-digestion of food waste and sewage sludge and its direct interspecies electron transfer pathway study[J]. Chemical Engineering Journal, 2020, 398: 125643.
[44] QI Q X, SUN C, CRISTHIAN C, et al. Enhancement of methanogenic performance by gasification biochar on anaerobic digestion[J]. Bioresource Technology, 2021, 330: 124993.
[45] ZHAO Z S, CAO Y, LI S Y, et al. Effects of biowaste-derived biochar on the electron transport efficiency during anaerobic acid orange 7 removal[J]. Bioresource Technology, 2021, 320: 124295.
[46] LU J H, CHEN C, HUANG C, et al. Glucose fermentation with biochar amended consortium: sequential fermentations[J]. Bioresource Technology, 2020, 303: 122933.
[47] CHIAPPERO M, NOROUZI O, HU M Y, et al. Review of biochar role as additive in anaerobic digestion processes[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110037.
[48] WANG Y, HU Y T, ZHAO X, et al. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times[J]. Energy & Fuels, 2013, 27(10): 5890-5899.
[49] 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 北京:中国科学院大学, 2017. WEI S Y. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
[50] GAO L, LI Z H, YI W M, et al. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105602.
[51] ZHU L, LEI H W, WANG L, et al. Biochar of corn stover: microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 149-156.
[52] LI H B, DONG X L, DA SILVA E B, et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478.
[53] LI W W, AMIN F R, FU Y S, et al. Effects of temperature, heating rate, residence time, reaction atmosphere, and pressure on biochar properties[J]. Journal of Biobased Materials and Bioenergy, 2019, 13(1): 1-10.
[54] XIAO X, CHEN B L, CHEN Z M, et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review[J]. Environmental Science & Technology, 2018, 52(9): 5027-5047.
[55] 冯晶,荆勇,赵立欣,等. 生物炭强化有机废弃物厌氧发酵技术研究[J]. 农业工程学报,2019, 35(12):256-264. FENG J, JING Y, ZHAO L X, et al. Research progress on biochar enhanced anaerobic fermentation technology of organic wastes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 256-264. (in Chinese)
[56] 张万钦, 吴树彪, 郎乾乾, 等. 微量元素对沼气厌氧发酵的影响[J]. 农业工程学报,2013, 29(10): 1-11. ZHANG W Q, WU S B, LANG Q Q, et al. Trace elements on influence of anaerobic fermentation in biogas projects[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10): 1-11. (in Chinese)
[57] 周丹丹,吴文卫,赵婧,等. 花生壳和松木屑制备的生物炭对Cu2+的吸附研究[J]. 生态环境学报,2016,25(3):523-530. ZHOU D D, WU W W, ZHAO J, et al. Study on the adsorption of Cu2+ to biochars produced from peanut shells and pine chips[J]. Ecology and Environmental Sciences, 2016,25(3):523-530. (in Chinese)
[58] GUO J L, ZHENG L, LI Z F, et al. Effects of various pyrolysis conditions and feedstock compositions on the physicochemical characteristics of cow manure-derived biochar[J]. Journal of Cleaner Production, 2021, 311: 127458.
[59] PAZ-FERREIRO J, GASCÓ G, GUTIÉRREZ B, et al. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil[J]. Biology and Fertility of Soils, 2011, 48(5): 511-517.
[60] TAG A T, DUMAN G, UCAR S, et al. Effects of feedstock type and pyrolysis temperature on potential applications of biochar[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 200-206.
[61] 袁帅,赵立欣,孟海波,等. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报,2016,22(5):1402-1417. YUAN S, ZHAO L X, MENG H B, et al. The main types of biochar and their properties and expectative researches[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5):1402-1417. (in Chinese)
[62] DAS S K, GHOSH G K, AVASTHE R K, et al. Compositional heterogeneity of different biochar: effect of pyrolysis temperature and feedstocks[J]. Journal of Environmental Management, 2021, 278(Pt 2): 111501.
[63] SEWU D D, BOAKYE P, WOO S H. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste[J]. Bioresource Technology, 2017, 224: 206-213.
[64] JAUN R, MRLIK V, RIBITSCH D, et al. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature[J]. Carbon Resources Conversion, 2021, 4: 36-46.
[65] 高新. 生物炭强化苯酚厌氧降解及甲烷化过程机理研究[D]. 西安:西安建筑科技大学,2020. GAO X. Study on the mechanism of enhance anaerobic degradation and methanogenesis of phenol by biochar addition[D]. Xi'an: Xi'an University of Architecture and Technology, 2020. (in Chinese)
[66] WU X J, LUO N C, XIE S J, et al. Photocatalytic transformations of lignocellulosic biomass into chemicals[J]. Chemical Society Reviews, 2020, 49(17): 6198-6223.
[67] ZHAO D Y, YAN B H, LIU C, et al. Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste[J]. Bioresource Technology, 2021, 338: 125531.
[68] 于亚梅,沈雁文,朱南文,等. 生物炭和石墨的电化学性质对剩余污泥厌氧消化产甲烷的影响[J]. 环境工程学报,2020,14(3):807-820. YU Y M, SHEN Y W, ZHU N W, et al. Effect of electrochemical properties of biochar and graphite on methane production in anaerobic digestion of excess activated sludge[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 807-820. (in Chinese).
[69] ORTIZ L R, TORRES E, ZALAZAR D, et al. Influence of pyrolysis temperature and bio-waste composition on biochar characteristics[J]. Renewable Energy, 2020, 155: 837-847.
[70] SHAO L M, LI S S, CAI J, et al. Ability of biochar to facilitate anaerobic digestion is restricted to stressed surroundings[J]. Journal of Cleaner Production, 2019, 238: 117959.
[71] YAASHIKAA P R, KUMAR P S, VARJANI S, et al. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy[J]. Biotechnology Reports, 2020, 28: e00570.
PDF(2223 KB)

4394

Accesses

0

Citation

Detail

段落导航
相关文章

/