交联PE废旧料的回收方法及可逆交联高分子的研究进展

傅陈超, 张润, 薛平, 陈晓农, 贾明印, 陈轲

北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (5) : 1-12.

PDF(2212 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月5日 星期六
Email Alert  RSS
PDF(2212 KB)
北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (5) : 1-12. DOI: 10.13543/j.bhxbzr.2022.05.001
综述与专论

交联PE废旧料的回收方法及可逆交联高分子的研究进展

  • 傅陈超1, 张润1, 薛平1, 陈晓农2, 贾明印1, 陈轲1
作者信息 +

Recovery methods for cross-linked PE waste materials and progress in the study of reversible cross-linked polymers

  • FU ChenChao1, ZHANG Run1, XUE Ping1, CHEN XiaoNong2, JIA MingYin1, CHEN Ke1
Author information +
文章历史 +

摘要

随着我国国民经济的快速发展,不可逆交联聚乙烯(XLPE)在日常生活中的应用越来越广泛,但同时也产生了大量的废旧料。通过不可逆化学键形成的XLPE交联结构很难被破坏,导致其加热难熔融、难以循环加工,因此XLPE废旧料回收困难,再生利用率低,并且造成了严重的环境污染。近年来发展起来的可逆交联技术通过在高分子中引入动态化学键形成分子链交联结构,使其在特定物理场下可以解除交联结构,从而具备可回收性和再加工性。本文综述了XLPE的传统回收方法和可逆交联高分子的研究进展,总结了XLPE回收方法的优点和局限性,重点介绍了解离型反应和缔合交换型反应在制备动态交联高分子材料中的应用。

Abstract

With the rapid development of China's national economy, irreversible cross-linked polyethylene (XLPE) is more and more widely used in daily life, but at the same time, a large number of waste materials are produced. The chemical bonds in the cross-linked structure of XLPE are hard to break, which makes the material difficult to melt when heated and challenging to recycle. As a result, the recycling rate of XLPE waste materials is low, leading to serious environmental pollution. The reversible cross-linking technology developed in recent years leads to cross-linked molecular chain structures by introducing dynamic chemical bonds into the polymer. The cross-linked structure can be broken down under a specific physical action, making the material recyclable and reprocessable. This paper reviews the traditional methods of recycling XLPE and recent progress in the study of reversible cross-linked polymers. The application of dissociation reactions and association exchange reactions in the preparation of dynamic cross-linked polymers is introduced. The advantages and limitations of different XLPE recovery methods are summarized.

关键词

交联聚乙烯 / 回收 / 动态共价键 / 可逆交联

Key words

cross-linked polyethylene / recovery / dynamic covalent bond / reversible cross-linking

引用本文

导出引用
傅陈超, 张润, 薛平, 陈晓农, 贾明印, 陈轲. 交联PE废旧料的回收方法及可逆交联高分子的研究进展[J]. 北京化工大学学报(自然科学版), 2022, 49(5): 1-12 https://doi.org/10.13543/j.bhxbzr.2022.05.001
FU ChenChao, ZHANG Run, XUE Ping, CHEN XiaoNong, JIA MingYin, CHEN Ke. Recovery methods for cross-linked PE waste materials and progress in the study of reversible cross-linked polymers[J]. Journal of Beijing University of Chemical Technology, 2022, 49(5): 1-12 https://doi.org/10.13543/j.bhxbzr.2022.05.001

参考文献

[1] 聂颖. 交联聚乙烯的生产应用及发展前景[J]. 化工科技市场, 2007, 30(3):30-35. NIE Y. Production, application and development prospect of crosslinked polyethylene[J]. Chemical Technology Market, 2007, 30(3):30-35. (in Chinese)
[2] 胡彪, 吴贺君, 卢灿辉. 废弃交联聚乙烯回收利用研究进展[J]. 中国塑料, 2015, 29(9):1-5. HU B, WU H J, LU C H. Reclamation of waste cross-linked polyethylene[J]. China Plastics, 2015, 29(9):1-5. (in Chinese)
[3] 刘丽英. 热可逆交联聚乙烯的制备及性能研究[D]. 大连:大连理工大学, 2021. LIU L Y. Preparation and properties of thermo-reversible cross-linked polyethylene[D]. Dalian:Dalian University of Technology, 2021. (in Chinese)
[4] 168报告网. 市场研究报告:2021年全球交联聚乙烯泡沫市场现状分析报告[EB/OL].[2022-01-19]. https://www.360kuai.com/pc/9657080160514d279?cota=3&kuai_so=1&sign=360_57c3bbd1&refer_scene=so_1. 168 report network. Market research report:analysis report on the current state of the global crosslinked polyethylene foam market in 2021[EB/OL].[2022-01-19]. https://www.360kuai.com/pc/9657080160514d279?cota=3&kuai_so=1&sign=360_57c3bbd1&refer_scene=so_1. (in Chinese)
[5] 李懿轩, 李天奇, 陆星远, 等. 可逆交联聚合物材料:修复、循环利用与降解[J]. 中国材料进展, 2022, 41(1):39-51. LI Y X, LI T Q, LU X Y, et al. Reversibly cross-linked polymeric materials:healing, recycling and degradation[J]. Materials China, 2022, 41(1):39-51. (in Chinese)
[6] XU X, WANG Q, KONG X, et al. Pan mill type equipment designed for polymer stress reactions:theoretical analysis of structure and milling process of equipment[J]. Plastics, Rubber and Composites Processing and Applications, 1996, 25(3):152-158.
[7] SUN F S, YANG S Q, WANG Q. Selective decomposition process and mechanism of Si-O-Si cross-linking bonds in silane cross-linked polyethylene by solid-state shear milling[J]. Industrial and Engineering Chemistry Research, 2020, 59(28):12896-12905.
[8] WU H J, LIANG M, LU C H. Morphological and structural development of recycled crosslinked polyethylene during solid-state mechanochemical milling[J]. Journal of Applied Polymer Science, 2011, 122(1):257-264.
[9] 李万庆, 卢灿辉, 梁梅. 废弃交联PE的力化学再生及其与PE-HD共混物性能的研究[J]. 中国塑料, 2009, 23(1):95-98. LI W Q, LU C H, LIANG M. Reclamation of waste cross-linked polyethylene by mechanochemical milling and properties of PE-XL/PE-HD blends[J]. China Plastics, 2009, 23(1):95-98. (in Chinese)
[10] 卢灿辉, 张新星, 梁梅. 难回收废弃交联高分子材料再生利用新技术[J]. 国外塑料, 2008, 26(2):66-69. LU C H, ZHANG X X, LIANG M. New technology of recycling and utilization of waste cross-linked polymer materials that are difficult to recycle[J]. World Plastics, 2008, 26(2):66-69. (in Chinese)
[11] 高宇. 废弃线缆绝缘料交联聚乙烯制备护墙板的再利用工艺探索[D]. 桂林:桂林电子科技大学, 2021. GAO Y. Exploration on the reuse technology of waste cable insulation material crosslinked polyethylene for wallboard preparation[D]. Guilin:Guilin University of Electronic Technology, 2021. (in Chinese)
[12] SUN F S, BAI S B, WANG Q. Structures and properties of waste silicone cross-linked polyethylene de-cross-linked selectively by solid-state shear mechanochemical technology[J]. Journal of Vinyl and Additive Technology, 2019, 25(2):149-158.
[13] 冯佳冰, 陈英红, 白时兵. 固相剪切碾磨制备HDPE/WTR共混体系的结构与性能[J]. 塑料, 2015, 44(4):32-36. FENG J B, CHEN Y H, BAI S B. Structure and properties of HDPE/WTR blend prepared through solid state shear milling method[J]. Plastics, 2015, 44(4):32-36. (in Chinese)
[14] 薛周航, 李庆业, 张伟, 等. 熔融沉积成型用聚乙烯/膨胀石墨导热复合材料的制备及性能[J]. 高分子材料科学与工程, 2020, 36(9):88-96. XUE Z H, LI Q Y, ZHANG W, et al. Preparation and properties of thermal conductive polyethylene/expanded graphite composites for fused deposition modeling[J]. Polymer Materials Science and Engineering, 2020, 36(9):88-96. (in Chinese)
[15] 吴贺君, 董知韵, 卢灿辉, 等. 固相剪切碾磨对Al/低密度聚乙烯导热复合材料结构与性能的影响[J]. 复合材料学报, 2017, 34(3):530-539. WU H J, DONG Z Y, LU C H, et al. Effect of solid-state shear milling on the structures and properties of thermally conductive Al/LLDPE composites[J]. Acta Materiae Compositae Sinica, 2017, 34(3):530-539. (in Chinese)
[16] 江俊, 李怡俊, 杨双桥. 固相剪切碾磨加工回收利用废弃人工草坪[J]. 塑料, 2020, 49(6):74-78, 147. JIANG J, LI Y J, YANG S Q. Recycling waste artificial turf by solid state shear milling technology[J]. Plastics, 2020, 49(6):74-78, 147. (in Chinese)
[17] LINDQVIST K, ANDERSSON M, BOSS A, et al. Thermal and mechanical properties of blends containing PP and recycled XLPE cable waste[J]. Journal of Polymers and the Environment, 2019, 27(2):386-394.
[18] 陆露, 高宇, 郭川东, 等. 废弃XLPE增强HDPE的力学和摩擦性能研究[J]. 润滑与密封, 2021, 46(10):113-118. LU L, GAO Y, GUO C D, et al. Mechanical and frictional properties of high density polyethylene reinforced by waste crosslinked polyethylene[J]. Lubrication Engineering, 2021, 46(10):113-118. (in Chinese)
[19] 高宇, 郭川东, 黄光竟, 等. Nano-CaCO3/废弃XLPE/HDPE复合材料的摩擦磨损性能研究[J]. 塑料工业, 2020, 48(12):40-44, 100. GAO Y, GUO C D, HUANG G J, et al. Study on friction and wear properties of nano-CaCO3/waste XLPE/HDPE composites[J]. China Plastics Industry, 2020, 48(12):40-44, 100. (in Chinese)
[20] ZÉHIL G P, ASSAAD J J. Feasibility of concrete mixtures containing cross-linked polyethylene waste materials[J]. Construction and Building Materials, 2019, 226:1-10.
[21] NAVRATIL J, MANAS M, MIZERA A, et al. Recycling of irradiated high-density polyethylene[J]. Radiation Physics and Chemistry, 2015, 106:68-72.
[22] 岂林霞. 交联聚乙烯回收粉料填充高密度聚乙烯加工性能研究[D]. 北京:北京化工大学, 2018. QI L X. Research on processbility of recycled crosslinked polyethylene powder filled high density polyethylene[D]. Beijing:Beijing University of Chemical Technology, 2018. (in Chinese)
[23] CHANDRAN N, SIVADAS A, ANUJA E V, et al. XLPE:crosslinking techniques and recycling process[M]//THOMAS J, THOMAS S, AHMAD Z, et al. Crosslinkable polyethylene. Singapore:Springer, 2021:167-188.
[24] 郦华兴, 邹从新, 姚志兰. 交联聚烯烃废料的回收和应用[J]. 塑料工业, 1991(6):53-55. LI H X, ZOU C X, YAO Z L. Recovery and application of crosslinked polyolefin waste[J]. China Plastics Industry, 1991(6):53-55. (in Chinese)
[25] TOKUDA S, HORIKAWA S, NEGISHI K, et al. Thermoplasticizing technology for the recycling of crosslinked polyethylene[J]. Furukawa Review, 2003(23):88-93.
[26] BAEK B K, LA Y H, LEE A S, et al. Decrosslinking reaction kinetics of silane-crosslinked polyethylene in sub-and supercritical fluids[J]. Polymer Degradation and Stability, 2016, 130:103-108.
[27] WATANABE S, KOMURA K, NAGAYA S, et al. Development of cross-linked polymer material recycling technology by supercritical water[C]//Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Volume 2). Nagoya:IEEE, 2003:595-598.
[28] GOTO T, YAMAZAKI T, SUGETA T, et al. Selective decomposition of the siloxane bond constituting the crosslinking element of silane-crosslinked polyethylene by supercritical alcohol[J]. Journal of Applied Polymer Science, 2008, 109(1):144-151.
[29] GOTO T, ASHIHARA S, YAMAZAKI T, et al. Continuous process for recycling silane cross-linked polyethylene using supercritical alcohol and extruders[J]. Industrial and Engineering Chemistry Research, 2011, 50(9):5661-5666.
[30] KWON Y J, PARK W Y, HONG S M, et al. Foaming of recycled crosslinked polyethylenes via supercritical decrosslinking reaction[J]. Journal of Applied Polymer Science, 2012, 126(S2):E21-E27.
[31] HUANG K, ISAYEV A I, ZHONG J. Ultrasonic decrosslinking of crosslinked high-density polyethylene:effect of screw design[J]. Journal of Applied Polymer Science, 2014, 131(17):40680.
[32] ISAYEV A I, HUANG K. Decrosslinking of crosslinked high-density polyethylene via ultrasonically aided single-screw extrusion[J]. Polymer Engineering and Science, 2014, 54(12):2715-2730.
[33] HUANG K, ISAYEV A I. Comparison between decrosslinking of crosslinked high and low density polyethylenes via ultrasonically aided extrusion[J]. Polymer, 2015, 70:290-306.
[34] LEHN J M. Dynamers:dynamic molecular and supramolecular polymers[J]. Progress in Polymer Science, 2005, 30(8-9):814-831.
[35] 郑宁, 谢涛. 热适性形状记忆聚合物[J]. 高分子学报, 2017(11):1715-1724. ZHENG N, XIE T. Thermadapt shape memory polymer[J]. Acta Polymerica Sinica, 2017(11):1715-1724. (in Chinese)
[36] KLOXIN C J, SCOTT T F, ADZIMA B J, et al. Covalent adaptable networks (CANs):a unique paradigm in cross-linked polymers[J]. Macromolecules, 2010, 43(6):2643-2653.
[37] CHAPELLE C, QUIENNE B, BONNWAUD C, et al. Diels-Alder-Chitosan based dissociative covalent adaptable networks[J]. Carbohydrate Polymers, 2021, 253:117222.
[38] KAMPLAIN J W, BIELAWSKI C W. Dynamic covalent polymers based upon carbene dimerization[J]. Chemical Communications, 2006(16):1727-1729.
[39] ZHENG N, XU Y, ZHAO Q, et al. Dynamic covalent polymer networks:a molecular platform for designing functions beyond chemical recycling and self-healing[J]. Chemical Reviews, 2021, 121(3):1716-1745.
[40] HUANG S, KONG X, XIONG Y, et al. An overview of dynamic covalent bonds in polymer material and their applications[J]. European Polymer Journal, 2020, 141:110094.
[41] MONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058):965-968.
[42] 张希. 可多次塑型、易修复及耐低温的三维动态高分子结构[J]. 高分子学报, 2016(6):685-687. ZHANG X. Reconfigurable, easy repairable and low-temperature resistant dynamic 3D polymer structures[J]. Acta Polymerica Sinica, 2016(6):685-687. (in Chinese)
[43] FENG Z B, YU B, HU J, et al. Multifunctional vitrimer-like polydimethylsiloxane (PDMS):recyclable, self-healable, and water-driven malleable covalent networks based on dynamic imine bond[J]. Industrial and Engineering Chemistry Research, 2019, 58(3):1212-1221.
[44] DENISSEN W, RIVERO G, NICOLAŸ R, et al. Vinylogous urethane vitrimers[J]. Advanced Functional Materials, 2015, 25(16):2451-2457.
[45] DENISSEN W, WINNE J M, DU PREZ F E. Vitrimers:permanent organic networks with glass-like fluidity[J]. Chemical Science, 2016, 7(1):30-38.
[46] LUO K J, HUANG L B, WANG Y, et al. Tailoring the properties of Diels-Alder reaction crosslinked high-performance thermosets by different bismaleimides[J]. Chinese Journal of Polymer Science, 2020, 38(3):268-277.
[47] JIANG Z C, XIAO Y Y, TONG X, et al. Selective decrosslinking in liquid crystal polymer actuators for optical reconfiguration of origami and light-fueled locomotion[J]. Angewandte Chemie International Edition, 2019, 131(16):5386-5391.
[48] ZHENG H, WANG S Q, LU C, et al. Thermal, near-infrared light, and amine solvent triple-responsive recyclable imine-type vitrimer:shape memory, accelerated photohealing/welding, and destructing behaviors[J]. Industrial and Engineering Chemistry Research, 2020, 59(50):21768-21778.
[49] 曾艳丽, 张雪英, 孟令鹏, 等. RN3解离反应中交叉点构型及电子密度拓扑分析[J]. 河北师范大学学报(自然科学版), 2007, 31(6):775-779. ZENG Y L, ZHANG X Y, MENG L P, et al. Topological properties of the intersystem crossing points for RN3 dissociations[J]. Journal of Hebei Normal University (Natural Science Edition), 2007, 31(6):775-779. (in Chinese)
[50] 周敏, 石莹莹, 李树奇, 等. 不同电荷态泛素蛋白离子的193 nm紫外光解离质谱[J]. 高等学校化学学报, 2021, 42(8):2436-2442. ZHOU M, SHI Y Y, LI S Q, et al. 193 nm UV photodissociation mass spectrometry for ubiquitin ions with different charge states[J]. Chemical Journal of Chinese Universities, 2021, 42(8):2436-2442. (in Chinese)
[51] CHEN X X, DAM M A, ONO K, et al. A thermally re-mendable cross-linked polymeric material[J]. Science, 2002, 295(5560):1698-1702.
[52] FU G, YUAN L, LIANG G, et al. Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers[J]. Journal of Materials Chemistry A, 2016, 4(11):4232-4241.
[53] YU S, ZHANG R C, WU Q, et al. Bio-inspired high-performance and recyclable cross-linked polymers[J]. Advanced Materials, 2013, 25(35):4912-4917.
[54] LI J, ZHANG G, DENG L, et al. In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels-Alder chemistry[J]. Journal of Materials Chemistry A, 2014, 2(48):20642-20649.
[55] LUO K J, LI J, DUAN G Y, et al. Comb-shaped aroma-tic polyamide cross-linked by Diels-Alder chemistry:towards recyclable and high-performance thermosets[J]. Polymer, 2018, 142:33-42.
[56] HEO Y, MALAKOOTI M H, SODANO H A. Self-healing polymers and composites for extreme environments[J]. Journal of Materials Chemistry A, 2016, 4(44):17403-17411.
[57] YANG Y, URBAN M W. Self-repairable polyurethane networks by atmospheric carbon dioxide and water[J]. Angewandte Chemie International Edition, 2014, 126(45):12338-12343.
[58] LIU S H, LIU X Y, HE Z K, et al. Thermoreversible cross-linking of ethylene/propylene copolymers based on Diels-Alder chemistry:the cross-linking reaction kine-tics[J]. Polymer Chemistry, 2020, 11(36):5851-5860.
[59] HE Z K, NIU H, LIU L Y, et al. Elastomeric polyolefin vitrimer:dynamic imine bond cross-linked ethylene/propylene copolymer[J]. Polymer, 2021, 229:124015.
[60] HE Z K, NIU H, ZHENG N, et al. Poly (ethylene-co-propylene)/poly(ethylene glycol) elastomeric hydrogels with thermoreversibly cross-linked networks[J]. Polymer Chemistry, 2019, 10(35):4789-4800.
[61] 刘丽英, 牛慧. 基于Diels-Alder反应的热可逆交联聚乙烯的合成[J]. 高分子通报, 2021(6):114-121. LIU L Y, NIU H. Synthesis of thermoreversibly cross-linked polyethylenes based on Diels-Alder reaction[J]. Polymer Bulletin, 2021(6):114-121. (in Chinese)
[62] 陈靖泽. 聚烯烃共混物的热可逆交联[D]. 北京:北京化工大学, 2021. CHEN J Z. Thermally reversible crosslinking of polyolefin blends[D]. Beijing:Beijing University of Chemical Technology, 2021. (in Chinese)
[63] FORTMAN D J, BRUTMAN J P, CRAMER C J, et al. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers[J]. Journal of the American Chemical Society, 2015, 137(44):14019-14022.
[64] SHEN T, SONG Z, CAI S, et al. Nonsteady fracture of transient networks:the case of vitrimer[J]. Proceedings of the National Academy of Sciences, 2021, 118(29):e2105974118.
[65] 周立生, 刘剑侠, 吴淑新, 等. 类玻璃高分子材料的研究进展[J]. 材料导报, 2020, 34(Z1):585-591. ZHOU L S, LIU J X, WU S X, et al. Research progress of vitrimer materials[J]. Materials Reports, 2020, 34(Z1):585-591. (in Chinese)
[66] ALTUNA F I, PETTARIN V, WILLIAMS R J J. Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution[J]. Green Chemistry, 2013, 15(12):3360-3366.
[67] ROMANO F, SCIORTINO F. Switching bonds in a DNA gel:an all-DNA vitrimer[J]. Physical Review Letters, 2015, 114(7):078104.
[68] HAO C, LIU T, ZHANG S, et al. A high-lignin-content, removable, and glycol-assisted repairable coating based on dynamic covalent bonds[J]. ChemSusChem, 2019, 12(5):1049-1058.
[69] OBADIA M M, MUDRABOYINA B P, SERGHRI A, et al. Reprocessing and recycling of highly cross-linked ion-conducting networks through transalkylation exchanges of C-N bonds[J]. Journal of the American Chemical Society, 2015, 137(18):6078-6083.
[70] 张宏. 聚吡咯包裹碳纳米管掺杂vitrimer对于酯交换反应的影响及加入Fe3O4后在电磁屏蔽方面的作用[D]. 上海:华东师范大学, 2017. ZHANG H. Transesterification enhancement of vitrimer by polypyrrole wrapped carbon nanotube doping and its application in electromagnetic shielding with further Fe3O4 doping[D]. Shanghai:East China Normal University, 2017. (in Chinese)
[71] BRUTMAN J P, DELOGADO P A, HILLMYER M A. Polylactide vitrimers[J]. ACS Macro Letters, 2014, 3(7):607-610.
[72] HUANG J, ZHANG L J, TANG Z H, et al. Reprocessable and robust crosslinked elastomers via interfacial C-N transalkylation of pyridinium[J]. Composites Science and Technology, 2018, 168:320-326.
[73] SNYDER R L, FORTMAN D J, DE HOE G X, et al. Reprocessable acid-degradable polycarbonate vitrimers[J]. Macromolecules, 2018, 51(2):389-397.
[74] HAN J R, LIU T, HAO C, et al. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer[J]. Macromolecules, 2018, 51(17):6789-6799.
[75] DU X, LI J, WELLE A, et al. Reversible and rewritable surface functionalization and patterning via photodynamic disulfide exchange[J]. Advanced Materials, 2015, 27(34):4997-5001.
[76] RÖTTGER M, DOMENECH T, VAN DER WEEGEN R, et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis[J]. Science, 2017, 356(6333):62-65.
[77] CAFFY F, NICOLAŸ R. Transformation of polyethylene into a vitrimer by nitroxide radical coupling of a bis-dioxaborolane[J]. Polymer Chemistry, 2019, 10(23):3107-3115.
[78] TRETBAR C A, NEAL J A, GUAN Z. Direct silyl ether metathesis for vitrimers with exceptional thermal stability[J]. Journal of the American Chemical Society, 2019, 141(42):16595-16599.

基金

中央高校基本科研业务费(JD2219)
PDF(2212 KB)

3878

Accesses

0

Citation

Detail

段落导航
相关文章

/