相变蓄热水箱蓄热性能数值模拟研究

田源, 陈聪, 卢涛, 杨洪润, 罗彦, 成翔

北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (4) : 83-90.

PDF(3016 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月15日 星期二
Email Alert  RSS
PDF(3016 KB)
北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (4) : 83-90. DOI: 10.13543/j.bhxbzr.2022.04.010
机电工程和信息科学

相变蓄热水箱蓄热性能数值模拟研究

  • 田源1, 陈聪2, 卢涛1, 杨洪润2, 罗彦1, 成翔2
作者信息 +

Numerical simulation of the heat storage performance of heat storage tanks containing phase change materials

  • TIAN Yuan1, CHEN Cong2, LU Tao1, YANG HongRun2, LUO Yan1, CHENG Xiang2
Author information +
文章历史 +

摘要

在封闭静止的蓄热水箱中添加相变材料可以增加水箱热容量、延长水箱升温时间。分别建立了有、无相变单元蓄热水箱的物理模型,利用有限体积分析法对蓄热水箱加热过程进行数值模拟,探讨了封闭水箱加热过程中相变单元的熔化规律和相变单元对水箱温升的影响规律。研究结果表明相对于纯水蓄热水箱,当蓄热水箱中加入占水箱容积9.05%(体积分数)的相变单元、其平均温升29 K时,蓄热水箱的整体热容量提高了25.58%,加热时间延长了1 100 s;蓄热水箱内只在垂直方向上存在热分层,导致含有相变单元的蓄热水箱较高位置处的相变单元先熔化,降低了较高位置处水的温升速率,使得相变蓄热水箱和纯水蓄热水箱的热分层剧烈程度存在差别;以最大温差值作为判断水箱热分层剧烈程度的依据,不同加热功率下相变蓄热水箱的热分层特征变化规律大致相同,但加热功率越大,热分层现象越剧烈。

Abstract

Adding a phase change material to a closed static heat storage tank can increase the heat capacity of the tank and prolong the heating time of the tank. In this paper, a two-dimensional physical model of heat storage tanks with and without a phase change element is established, the heating process of the heat storage tanks is simulated numerically by the finite volume analysis method, and the melting law of the phase change element and the influence of the phase change element on the temperature rise of the water tank are discussed. The results show that compared with a pure water heat storage tank, adding a phase change material with an effective volume of 9.1% increases the overall heat capacity of the heat storage tank by 25.6% and the heating time is prolonged by 1 100 s when the average temperature of the heat storage tank is increased by 29 K. Temperature stratification in the hot water storage tank only occurs in the vertical direction, which leads to the melting of the phase change element at higher positions in the heat storage tank, which reduces the rate of water temperature rise at higher positions, and leads to differences in the intensity of thermal stratification between the phase change heat storage tank and the pure water heat storage tank. Taking the maximum temperature difference as the criterion for judging the intensity of thermal stratification in the water tank, the variation in thermal stratification characteristics of the phase change heat storage tank are essentially independent of heating power, but thermal stratification in the phase change heat storage tank becomes more intense with increasing heating power.

关键词

相变蓄热水箱 / 延时升温 / 自然对流 / 热分层 / 数值模拟

Key words

phase change heat storage tank / delay temperature rise / natural convection / thermal stratification / numerical simulation

引用本文

导出引用
田源, 陈聪, 卢涛, 杨洪润, 罗彦, 成翔. 相变蓄热水箱蓄热性能数值模拟研究[J]. 北京化工大学学报(自然科学版), 2022, 49(4): 83-90 https://doi.org/10.13543/j.bhxbzr.2022.04.010
TIAN Yuan, CHEN Cong, LU Tao, YANG HongRun, LUO Yan, CHENG Xiang. Numerical simulation of the heat storage performance of heat storage tanks containing phase change materials[J]. Journal of Beijing University of Chemical Technology, 2022, 49(4): 83-90 https://doi.org/10.13543/j.bhxbzr.2022.04.010

参考文献

[1] 王迎斌, 张海峰, 贺行洋, 等. 相变材料的研究进展及应用[J]. 建材世界, 2020, 41(2):6-8. WANG Y B, ZHANG H F, HE X Y, et al. Research progress and application of phase change materials[J]. The World of Building Materials, 2020, 41(2):6-8. (in Chinese)
[2] 张洪宇, 卢军, 庄春龙, 等. 地下防护工程空调相变储热水池储热性能实验研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(11):1187-1193. ZHANG H Y, LU J, ZHUANG C L, et al. Performance of the phase change heat storage air-conditioning reservoir for underground protective engineering[J]. Journal of Tianjin University (Science and Technology), 2019, 52(11):1187-1193. (in Chinese)
[3] BAYOMY A, DAVIES S, SAGHIR Z. Domestic hot water storage tank utilizing phase change materials (PCMs):numerical approach[J]. Energies, 2019, 12:2170.
[4] KOŽELJ R, MLAKAR U, ZAVRL E, et al. An experimental and numerical analysis of an improved thermal storage tank with encapsulated PCM for use in retrofitted buildings for heating[J]. Energy and Buildings, 2021, 248:111196.
[5] WANG Z L, ZHANG H, DOU B L, et al. The thermal stratification evaluation of phase-change materials in a heat storage tank:computational fluid dynamics and experimental study[J]. Journal of Solar Energy Engineering, 2020, 142:021012.
[6] 周利强, 王子龙, 张华, 等. 相变蓄热水箱温度特性的试验研究[J]. 流体机械, 2019, 47(11):79-84. ZHOU L Q, WANG Z L, ZHANG H, et al. Experimental study on temperature characteristics of phase change hot water tank[J]. Fluid Machinery, 2019, 47(11):79-84. (in Chinese)
[7] LI W, LI S G, GUAN S K, et al. Numerical study on melt fraction during melting of phase change material inside a sphere[J]. International Journal of Hydrogen Energy, 2017, 42(29):18232-18239.
[8] ABDULATEEF J, HASAN A F, MAHDI M S. Role of composite phase change material on the thermal performance of a latent heat storage system:experimental investigation[J]. Journal of Harbin Institute of Technology (New Series), 2020, 27(1):44-51.
[9] 田文喜, 王明军, 秋穗正, 等. 基于CFD方法的核动力系统热工安全特性研究进展[J]. 原子能科学技术, 2019, 53(10):1968-1982. TIAN W X, WANG M J, QIU S Z, et al. Review on safety characteristics research progress of nuclear power plant thermal-hydraulics using CFD method[J]. Atomic Energy Science and Technology, 2019, 53(10):1968-1982. (in Chinese)
[10] 赵顺. 有机无机复合相变储能材料的制备及性能研究[D]. 北京:北京化工大学, 2020. ZHAO S. Preparation and properties of organic-inorganic composite phase change energy storage materials[D]. Beijing:Beijing University of Chemical Technology, 2020. (in Chinese)
[11] 黄金, 柯秀芳. 无机水合盐相变材料Na2SO4·10H2O的研究进展[J]. 材料导报, 2008, 22(3):63-67. HUANG J, KE X F. Research and development of Na2SO4·10H2O as phase change materials[J]. Materials Reports, 2008, 22(3):63-67. (in Chinese)
[12] VOLLER V R, SHADABI L. Enthalpy methods for tracking a phase change boundary in two dimensions[J]. International Communications in Heat and Mass Transfer, 1984, 11(3):239-249.
[13] LIN W Z, LING Z Y, FANG X M, et al. Experimental and numerical research on thermal performance of a novel thermal energy storage unit with phase change material[J]. Applied Thermal Engineering, 2021, 186:116493.
[14] 贾兴龙, 陈宝明, 张艳勇, 等. 梯度骨架对固液相变蓄热特性影响研究[J]. 山东建筑大学学报, 2020, 35(2):56-63. JIA X L, CHEN B M, ZHANG Y Y, et al. Study on the effect of gradient skeleton on the heat storage characteristics of solid-liquid phase change[J]. Journal of Shandong Jianzhu University, 2020, 35(2):56-63. (in Chinese)
[15] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京:高等教育出版社, 2006. YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing:Higher Education Press, 2006. (in Chinese)
[16] 郭梦雪. 套管式相变蓄热器内管排列方式和壁温的影响[J]. 煤气与热力, 2019, 39(5):1-7, 41. GUO M X. Heat source and cold source influence of inner tube arrangement and wall temperature of casing-type phase-change heat accumulator[J]. Gas & Heat, 2019, 39(5):1-7, 41. (in Chinese)
[17] YANG Z, CHEN H S, WANG L, et al. Comparative study of the influences of different water tank shapes on thermal energy storage capacity and thermal stratification[J]. Renewable Energy, 2016, 85:31-44.

基金

国防科技工业核动力技术创新中心项目(HDLCXZX-2021-ZH-006)
PDF(3016 KB)

2206

Accesses

0

Citation

Detail

段落导航
相关文章

/