含硅氧烷链段和聚苯醚结构的芳香族聚酰胺的制备及其对环氧树脂的增韧改性

张津怡, 白小陶, 刘敏, 王芳, 周权

北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (3) : 30-39.

PDF(5840 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月6日 星期日
Email Alert  RSS
PDF(5840 KB)
北京化工大学学报(自然科学版) ›› 2022, Vol. 49 ›› Issue (3) : 30-39. DOI: 10.13543/j.bhxbzr.2022.03.005
材料科学与工程

含硅氧烷链段和聚苯醚结构的芳香族聚酰胺的制备及其对环氧树脂的增韧改性

  • 张津怡, 白小陶, 刘敏, 王芳, 周权
作者信息 +

Preparation of an aromatic polyamide with a poly (phenylene oxide) structure containing siloxane segments and its use in toughening epoxy resin

  • ZHANG JinYi, BAI XiaoTao, LIU Min, WANG Fang, ZHOU Quan
Author information +
文章历史 +

摘要

以端氨基聚二甲基硅氧烷(ATPDMS)和聚苯醚(PPO)为原料,采用一锅缩聚法合成了一种含硅氧烷链段和聚苯醚结构的芳香族聚酰胺(PAPM),并通过傅里叶变换红外光谱(FT-IR)和核磁共振(NMR)对其进行了结构表征。将PAPM作为增韧改性剂,与固化剂甲基六氢苯酐(MHHPA)一起加入环氧树脂(E51)中制备了E51/MHHPA/PAPM固化物。测试了PAPM和E51的相容性,结果表明,当添加量为5%~15%(质量分数)时,PAPM与E51在固化后的相容性良好,没有发生宏观可见光尺度上的相分离。力学性能测试结果表明:当PAPM添加量为15%时,环氧固化物的临界应力强度因子(KIC)相比不添加PAPM的环氧体系增加了112.2%;当PAPM添加量为5%时,环氧固化物的储能模量相比不添加PAPM的环氧体系增加了56.6%。采用扫描电子显微镜(SEM)对增韧改性材料的断面形貌进行了分析,结果表明其断裂面呈现漩涡状裂纹结构,断裂表现为韧性断裂。差示扫描量热法(DSC)测试结果表明,当PAPM添加量为15%时,环氧固化物的玻璃化转变温度(Tg)相对于不含PAPM的环氧体系提高了28.2℃。

Abstract

An aromatic polyamide (PAPM) with a poly(phenylene oxide) (PPO) structure containing siloxane segments has been synthesized by a one-pot polycondensation method using amino-terminated polydimethylsiloxane (ATPDMS) and poly(phenylene oxide) as raw materials. Its structure was characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. An E51/MHHPA/PAPM cured product was prepared by adding PAPM as a toughening modifier and a curing agent (methyl hexahydrophthalic anhydride, MHHPA) to epoxy resin (E51). The compatibility of PAPM and E51 was tested, and the results showed that when the addition amount was 5%-15% (mass fraction), the compatibility of PAPM and E51 after curing was good, with no visible phase separation on the macroscopic light scale. Tests of mechanical properties showed that when the addition amount of PAPM was 15%, the critical stress intensity factor (KIC) of the cured epoxy resin increased by 112.2% compared with that of the epoxy system without PAPM. When the addition amount of PAPM was 5%, the storage modulus of the cured epoxy resin increased by 56.6% compared with that of the epoxy system without PAPM. The cross-section morphology of the toughened modified material was analyzed by scanning electron microscopy (SEM). The results showed that the fracture surface presented a whirlpool crack structure, and the fracture was ductile fracture. Differential scanning calorimetry (DSC) showed that when the addition amount of PAPM was 15%, the glass transition temperature (Tg) of the cured epoxy resin increased by 28.2 ℃ compared with that of the epoxy system without PAPM.

关键词

环氧树脂 / 芳香族聚酰胺 / 增韧改性 / 玻璃化转变温度

Key words

epoxy resin / aromatic polyamide / toughening modification / glass transition temperature

引用本文

导出引用
张津怡, 白小陶, 刘敏, 王芳, 周权. 含硅氧烷链段和聚苯醚结构的芳香族聚酰胺的制备及其对环氧树脂的增韧改性[J]. 北京化工大学学报(自然科学版), 2022, 49(3): 30-39 https://doi.org/10.13543/j.bhxbzr.2022.03.005
ZHANG JinYi, BAI XiaoTao, LIU Min, WANG Fang, ZHOU Quan. Preparation of an aromatic polyamide with a poly (phenylene oxide) structure containing siloxane segments and its use in toughening epoxy resin[J]. Journal of Beijing University of Chemical Technology, 2022, 49(3): 30-39 https://doi.org/10.13543/j.bhxbzr.2022.03.005

参考文献

[1] XIANG Y X, XU S, ZHENG S X. Epoxy toughening via formation of polyisoprene nanophases with amphiphilic diblock copolymer[J]. European Polymer Journal, 2018, 98:321-329.
[2] CHU W C, LIN W S, KUO S W. Flexible epoxy resin formed upon blending with a triblock copolymer through reaction-induced microphase separation[J]. Materials, 2016, 9(6):449.
[3] PARAMESWARANPILLAI J, SIDHARDHAN S K, JOSE S, et al. Reaction-induced phase separation and resulting thermomechanical and surface properties of epoxy resin/poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) blends cured with 4, 4'-diaminodiphenylsulfone[J]. Journal of Applied Polymer Science, 2017, 134(4):44406.
[4] PARAMESWARANPILLAI J, SIDHARDHAN S K, JOSE S, et al. Miscibility, phase morphology, thermomechanical, viscoelastic and surface properties of poly(ε-caprolactone) modified epoxy systems:effect of curing agents[J]. Industrial & Engineering Chemistry Research, 2016, 55(38):10055-10064.
[5] RATNA D, BANTHIA A K. Rubber toughened epoxy[J]. Macromolecular Research, 2004, 12(1):11-21.
[6] EBRAHIMABADI Y, MEHRSHAD M, MOKHTARY M, et al. Studies of thermal, mechanical properties, and kinetic cure reaction of carboxyl-terminated polybutadiene acrylonitrile liquid rubber with diepoxy octane[J]. Journal of Applied Polymer Science, 2021, 138(9):49932.
[7] ZHOU W Y, LI X, CAO D, et al. Simultaneously enhanced impact strength and dielectric properties of an epoxy resin modified with EHTPB liquid rubber[J]. Polymer Engineering and Science, 2020, 60(8):1984-1997.
[8] UHLIG C, KAHLE O, SCHÄFER O, et al. Blends of tri-block copolymers and addition curing resins:influence of block copolymer-resin compatibility on toughness and matrix properties on toughenability[J]. Reactive and Functional Polymers, 2019, 142:159-182.
[9] TAO L, SUN Z Y, MIN W, et al. Improving the toughness of thermosetting epoxy resins via blending triblock copolymers[J]. RSC Advances, 2020, 10:1603-1612.
[10] PARAMESWARANPILLAI J, SIDHARDHAN S K, HARIKRISHNAN P, et al. Morphology, thermo-mechanical properties and surface hydrophobicity of nanostructured epoxy thermosets modified with PE O-PP O-PEO triblock copolymer[J]. Polymer Testing, 2017, 59:168-176.
[11] DING H, ZHAO B J, MEI H G, et al. Toughening of epoxy thermosets with polystyrene-block-polybutadiene-block-polystyrene triblock copolymer via formation of nanostructures[J]. Polymer Engineering and Science, 2019, 59(11):2387-2396.
[12] VIJAYAN P P, PUGLIA D, AL-MAADEED M A S A, et al. Elastomer/thermoplastic modified epoxy nanocomposites:the hybrid effect of ‘micro’ and ‘nano’ scale[J]. Materials Science & Engineering R, 2017, 116:1-29.
[13] KARTHIKEYAN L, ROBERT T M, DESAKUMARAN D, et al. Epoxy terminated, urethane-bridged poly (ether ether ketone) as a reactive toughening agent for epoxy resins[J]. International Journal of Adhesion and Adhesives, 2022, 112:102983.
[14] ROSETTI Y, ALCOUFFE P, PASCAULT J P, et al. Polyether sulfone-based epoxy toughening:from micro-to nano-phase separation via PES end-chain modification and process engineering[J]. Materials, 2018, 11(10):1960.
[15] BAJPAI A, WETZEL B, FRIEDRICH K. High strength epoxy system modified with soft block copolymer and stiff core-shell rubber nanoparticles:morphology, mechanical properties, and fracture mechanisms[J]. Express Polymer Letters, 2020, 14(4):384-399.
[16] GEORGE S M, PUGLIA D, KENNY J M, et al. Morphological and mechanical characterization of nanostructured thermosets from epoxy and styrene-block-butadiene-block-styrene triblock copolymer[J]. Industrial & Engineering Chemistry Research, 2013, 52(26):9121-9129.
[17] VILČÁKOVÁ J, KUTEJOVÁ L, JURČA M, et al. Enhanced charpy impact strength of epoxy resin modified with vinyl-terminated polydimethylsiloxane[J]. Journal of Applied Polymer Science, 2018, 135(4):45720.
[18] XU Z G, ZHENG S X. Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly(ε-caprolactone)-block-polydimethylsiloxane-block-poly(ε-caprolactone) triblock copolymer[J]. Polymer, 2007, 48(20):6134-6144.
[19] MA S Q, LIU W Q, HU C H, et al. Toughening of epoxy resin system using a novel dendritic polysiloxane[J]. Macromolecular Research, 2010, 18(4):392-398.
[20] HENG Z G, ZENG Z, ZHANG B, et al. Enhancing mechanical performance of epoxy thermosets via designing a block copolymer to self-organize into "core-shell" nanostructure[J]. RSC Advances, 2016, 6(80):77030-77036.
[21] HU D, ZHENG S X. Morphology and thermomechanical properties of epoxy thermosets modified with polysulfone-block-polydimethylsiloxane multiblock copolymer[J]. Journal of Applied Polymer Science, 2011, 119(5):2933-2944.
[22] PARAMESWARANPILLAI J, SIDHARDHAN S K, JOSE S, et al. Micro phase separated epoxy/poly(ε-caprolactone)-block-poly(dimethyl siloxane)-block-poly(ε-caprolactone)/4, 4'-diaminodiphenylsulfone systems:morphology, viscoelasticity, thermo-mechanical properties and surface hydrophobicity[J]. Polymer Testing, 2016, 55:115-122.
[23] HENG Z G, ZENG Z, CHEN Y, et al. Silicone modified epoxy resins with good toughness, damping properties and high thermal residual weight[J]. Journal of Polymer Research, 2015, 22(11):203.
[24] NGUYEN T K L, LIVI S, SOARES B G, et al. Toughening of epoxy/ionic liquid networks with thermoplastics based on poly(2, 6-dimethy1-1, 4-phenylene ether) (PPE)[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1):1153-1164.
[25] WEN X F, WANG W, CAI Z Q, et al. Studies on cure kinetics of poly(phenylene ether)/epoxy resin system using an advanced iso-conversional method[J]. Polymer-Plastics Technology and Engineering, 2011, 50(15):1515-1518.
[26] LIU Y F, DU Z J, ZHANG C, et al. Curing reaction and thermal properties of bisphenol-A-type novolac epoxy resins with methylhexahydrophthalic anhydride[J]. Polymer Materials Science & Engineering, 2007, 23(2):73-76. (in Chinese) 刘彦方, 杜中杰, 张晨, 等. 双酚A甲醛酚醛环氧树脂与甲基六氢邻苯二甲酸酐的固化反应及热性能[J]. 高分子材料科学与工程, 2007, 23(2):73-76.
[27] ZHONG H, HUANG H J, WANG X M, et al. Application and development of epoxy curing agent[J]. Equipment Environmental Engineering, 2016, 13(4):136-142. (in Chinese) 钟辉, 黄红军, 王晓梅, 等. 环氧固化剂及其应用与发展[J]. 装备环境工程, 2016, 13(4):136-142.

基金

中央高校基本科研业务费专项资金(50321042017001)
PDF(5840 KB)

2337

Accesses

0

Citation

Detail

段落导航
相关文章

/