熔体微分静电纺丝聚丙烯纤维的吸油性能研究

曾良滨,何雪涛,谭晶,吴卫逢,杨卫民,李好义

北京化工大学学报(自然科学版) ›› 2015, Vol. 42 ›› Issue (6) : 66-71.

PDF(1323 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月10日 星期四
Email Alert  RSS
PDF(1323 KB)
北京化工大学学报(自然科学版) ›› 2015, Vol. 42 ›› Issue (6) : 66-71.
材料科学与工程

熔体微分静电纺丝聚丙烯纤维的吸油性能研究

  • 曾良滨,何雪涛,谭晶,吴卫逢,杨卫民,李好义*
作者信息 +

The oil sorption performance of melt differential electrospun polypropylene fibers

  • ZENG LiangBin,HE XueTao,TAN Jing,WU WeiFeng,YANG WeiMin,LI HaoYi*
Author information +
文章历史 +

摘要

利用自制熔体微分静电纺丝装置制备不同纺丝温度条件的聚丙烯纤维。获得纤维的平均直径为810nm,单个喷头产量达13 g/h;电纺纤维接触角分布在140°~150°,对比数据发现接触角与纤维直径无明显关系;聚丙烯纤维棉相对机油的最大初始吸油率、吸油倍率和保油率分别为235、158和62 g/g。初步探究吸油机理表明,吸油倍率随纤维直径的减小、孔隙率的增加、油品黏度的增加有增大的趋势,纤维样本重复吸/放油7次后,其吸油倍率为原来的59%~78%。

Abstract

Polypropylene fibers were fabricated using a melt differential electrospinning device at different temperatures. Nanofibers with a fiber diameter of 810 nm were obtained with a throughput of 13 g/h per nozzle. The contact angle of the resulting fibers was in the range 140° to 150° and was independent of the fiber diameter. The maximum initial sorption capacity, oil sorption capacity and oil retention capacity of the polypropylene fiber was 235, 158 and 62 g/g, respectively. A tentative investigation of the oil sorption mechanism revealed that the sorption capacity increased with the decrease of fiber diameter, or with the increase of porosity and the increase of oil viscosity. After 7 cycles of oil sorption/desorption, the oil sorption capacity remained as high as 59%-78%.

关键词

熔体微分静电纺丝 / 聚丙烯纳米纤维 / 吸油倍率 / 吸油机理

Key words

melt differential electrospinning / polypropylene nanofiber / oil sorption capacity / oil sorption mechanism

引用本文

导出引用
曾良滨,何雪涛,谭晶,吴卫逢,杨卫民,李好义. 熔体微分静电纺丝聚丙烯纤维的吸油性能研究[J]. 北京化工大学学报(自然科学版), 2015, 42(6): 66-71
ZENG LiangBin,HE XueTao,TAN Jing,WU WeiFeng,YANG WeiMin,LI HaoYi. The oil sorption performance of melt differential electrospun polypropylene fibers[J]. Journal of Beijing University of Chemical Technology, 2015, 42(6): 66-71

参考文献

[1] Deng D, Prendergast D P, Macfarlane J, et al. Hydrophobic meshes for oil spill recovery devices[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 774-781. 
[2] Singh V, Kendall R J, Hake K, et al. Crude oil sorption by raw cotton[J]. Industrial & Engineering Chemistry Research, 2013, 52 (18): 6277-6281.
[3] Yang C, Kaipa U, Mather Q Z, et al. Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage[J]. Journal of the American Chemical Society, 2011, 133 (45): 18094-18097.
[4] Abdullah M A, Rahmah A U, Man Z. Physicochemical and sorption characteristics of Malaysian Ceiba pentandra(L.) Gaertn. as a natural oil sorbent[J]. Journal of Hazardous Materials, 2010, 177: 683-691.
[5] Moriwaki H, Kitajima S, Kurashima M, et al. Utilization of silkworm cocoon waste as a sorbent for the removal of oil from water[J]. Journal of Hazardous Materials, 2009, 165: 266-270.
[6] Wang J T, Zheng Y, Wang A Q. Coated kapok fiber for removal of spilled oil[J]. Marine Pollution Bulletin, 2013, 69(2): 91-96.
[7] Lim G T, Puskas J E, Reneker D H, et al. Highly hydrophobic electrospun fiber mats from polyisobutylene-based thermoplastic elastomers[J]. Biomacromolecules, 2011, 12 (5): 1795-1799.
[8] Sas I, Gorga R E, Joines J A, et al. Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(12): 824-845. 
[9] Persano L, Camposeo A, Tekmen C, et al.  Industrial upscaling of electrospinning and applications of polymer nanofibers: a review[J]. Macromolecular Materials and Engineering, 2013, 298(5): 504-520.
[10] 曹胜光,胡炳环,刘海清. 静电纺制备纳米孔结构聚乳酸(PLLA)超细纤维[J]. 高分子学报, 2010(10): 1193-1198.
Cao S G,Hu B H,Liu H Q. Fabrication of nano-porous structured polylactide (PLLA) fibers through electrospinning[J]. Acta Polymerica Sinica, 2010(10): 1193-1198. (in Chinese)
[11]Zhu H T, Qiu S S, Jiang W, et al. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup[J]. Environmental Science & Technology, 2011, 45(10): 4527-4531.
[12] Wu J, Wang N, Wang L, et al. Electrospun porous structure fibrous film with high oil adsorption capacity[J]. ACS Applied Materials & Interfaces, 2012, 4: 3207-3212.
[13] Lin J Y, Tian F, Shang Y W, et al. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface[J]. Nanoscale, 2013, 5: 2745-2755.
[14] 王文华,王静,寇希元,等. 纳米聚丙烯纤维吸油特性及对水面浮油的吸附研究[J]. 海洋技术, 2013, 32(2): 106-109.
Wang W H,Wang J,Kou X Y, et al. Study on the oil adsorptive property of nano-polypropylene fiber and its application on floating oil adsorption on water surface [J]. Ocean Technology, 2013, 32(2): 106-109. (in Chinese)
[15] Hutmacher D W, Dalton P D. Melt electrospinning[J]. Chemistry-An Asian Journal, 2011, 6(1): 44-56.
[16] Nagy Z K, Balogh A, Drávavölgyi G, et al. Solvent-free melt electrospinning for preparation of fast dissolving drug delivery system and comparison with solvent-based electrospun and melt extruded systems[J]. Journal of Pharmaceutical Sciences, 2013, 102(2): 508-517.
[17] Brown T D, Dalton P D, Hutmacher D W. Direct writing by way of melt electrospinning[J]. Advanced Materials, 2011, 23(47): 5651-5657.
[18] Lafuma A, Quéré D. Superhydrophobic states[J]. Nature Materials, 2003, 2(7): 457460. 
[19] Cho D, Zhou H J, Cho Y J, et al. Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt[J]. Polymer, 2010, 51(25): 6005-6012.

基金

 北京市自然科学基金(2141002); 中央高校基本科研业务费(ZY1520)
PDF(1323 KB)

1213

Accesses

0

Citation

Detail

段落导航
相关文章

/