石墨烯/弹性体纳米复合材料研究进展

温世鹏, 柳东海, 许宗超, ;黎研, 彭同凯, 张立群, 刘力

北京化工大学学报(自然科学版) ›› 2015, Vol. 42 ›› Issue (6) : 1-14.

PDF(2905 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年4月7日 星期一
Email Alert  RSS
PDF(2905 KB)
北京化工大学学报(自然科学版) ›› 2015, Vol. 42 ›› Issue (6) : 1-14.
综述

石墨烯/弹性体纳米复合材料研究进展

  • 温世鹏1, 柳东海1,2, 许宗超1,2, 黎研1,2, 彭同凯1,2, 张立群1, 刘力1,2
作者信息 +

Recent progress in graphene/elastomer nanocomposites

  • WEN ShiPeng1, LIU DongHai 1,2, XU ZongChao 1,2, LI Yan 1,2, PENG TongKai 1,2, ZHANG LiQun 1, LIU Li 12
Author information +
文章历史 +

摘要

石墨烯材料由于其超薄的纳米片层结构,优良的导热、导电功能特性,在弹性体复合材料领域已经取得了众多的应用,并赋予了橡胶复合材料更强的动静态力学性能以及导电导热等功能性。本文从石墨烯的制备开始,重点综述了石墨烯的制备及表面修饰,石墨烯/弹性体制备方法,以及复合材料的各项性能,并阐述了三者之间的相互关联。最后提出了石墨烯/弹性体纳米复合材料领域未来应关注的科学和技术问题。

Abstract

Graphene (GE) has been applied in the elastomer composites because of its unique superfine sheet structure, excellent thermal and electrical conductivities. The GE/elastomer composites showed high static and dynamic properties and other functional properties. This review mainly discussed the preparation method and surface modification of GE, the preparation of GE/elastomer composites, and various properties of the composites. The relationship between the preparation, structure and properties of the composites was also discussed. Finally, we proposed the future science and technology topics about the GE/elastomer composites.

关键词

弹性体 / 石墨烯 / 复合材料 / 力学性能 / 导电导热

Key words

elastomer / graphene / composite / mechanical property / thermal and electrical properties

引用本文

导出引用
温世鹏, 柳东海, 许宗超, ;黎研, 彭同凯, 张立群, 刘力. 石墨烯/弹性体纳米复合材料研究进展[J]. 北京化工大学学报(自然科学版), 2015, 42(6): 1-14
WEN ShiPeng, LIU DongHai, XU ZongChao, LI Yan, PENG TongKai, ZHANG LiQun, LIU Li. Recent progress in graphene/elastomer nanocomposites[J]. Journal of Beijing University of Chemical Technology, 2015, 42(6): 1-14

参考文献

[1]Lee C D, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. 
[2]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. 
[3]Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of singlelayer graphene[J]. Nano Letters, 2008, 8(3): 902-907. 
[4]Stoller M D, Park S, Zhu Y W et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. [5]Gan L, Shang S M, Yuen C W M, et al. Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties[J]. Composites Part B: Engineering, 2015, 69: 237-242. 
[6]Zheng J, Di C A, Liu Y G, et al. High quality graphene with large flakes exfoliated by oleyl amine[J]. Chem Commun, 2010, 46(31): 5728-5730. 
[7]Coleman J N, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. 
[8]Berger C, Song Z, Li X B, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191-1196. 
[9]Shen J M, Feng Y T. Formation of flower-like carbon nanosheet aggregations and their electrochemical application[J]. The Journal of Physical Chemistry C, 2008, 112(34): 13114-13120. 
[10]Losurdo M, Giangregorio M M, Capezzuto P, et al. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure[J]. Physical Chemistry Chemical Physics, 2011, 13(46): 20836-20843. 
[11]Riedl C, Starke U, Bernhardt J, et al. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces[J]. Physical Review. Series B, 2007, 76(24): 245406. [12]Fernández-d'Arlas B, Corcuera M A, Eceiza A. Comparison between exfoliated graphite, graphene oxide and multiwalled carbon nanotubes as reinforcing agents of a polyurethane elastomer[J]. Journal of Thermoplastic Composite Materials, 2015, 28(5): 705-716. 
[13]Boland C S, Khan U, Backes C, et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites[J]. ACS Nano, 2014, 8(9): 8819-8830. 
[14]Beckert F, Trenkle S, Thomann R, et al. Mechanochemical route to functionalized graphene and carbon nanofillers for graphene/SBR nanocomposites[J]. Macromolecular Materials and Engineering, 2014, 299(12): 1513-1520.
[15]Araby S, Zhang L Q, Kuan HC, et al. A novel approach to electrically and thermally conductive elastomers using graphene[J]. Polymer, 2013, 54(14): 3663-3670. 
[16]Araby S, Meng Q S, Zhang L Q, et al. Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing[J]. Polymer, 2014, 55(1): 201-210. 
[17]Araby S, Zaman I, Meng Q S, et al. Melt compounding with graphene to develop functional, high-performance elastomers[J]. Nanotechnology, 2013, 24(16): 1-14. 
[18]Zhang Y, Mark J E, Zhu Y W, et al. Mechanical properties of polybutadiene reinforced with octadecylamine modified graphene oxide[J]. Polymer, 2014, 55(21): 5389-5395. 
[19]She X D, He C Z, Peng Z, et al. Molecular-level dispersion of graphene into epoxidized natural rubber: Morphology, interfacial interaction and mechanical reinforcement[J]. Polymer, 2014, 55(26): 6803-6810. 
[20]Allahbakhsh A, Mazinani S, Kalaee M R, et al. Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites[J]. Thermochimica Acta, 2013, 563: 22-32. 
[21]Allahbakhsh A, Mazinani S. Influences of sodium dodecyl sulfate on vulcanization kinetics and mechanical performance of EPDM/graphene oxide nanocomposites[J]. RSC Advances, 2015, 5(58): 46694-46704. 
[22]Bai X, Wan C Y, Zhang Y, et al. Reinforcement of hydrogenated carboxylated nitrile-butadiene rubber with exfoliated graphene oxide[J]. Carbon, 2011, 49(5): 1608-1613. 
[23]Mensah B, Kim S, Arepalli S, et al. A study of graphene oxide-reinforced rubber nanocomposite[J]. Journal of Applied Polymer Science, 2014, 131(16): 40640. 
[24]Li Y Q, Wang Q H, Wang T M, et al. Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites[J]. Journal of Materials Science, 2012, 47(2): 730-738. 
[25]Lin Y, Chen Y Z, Zhang Y, et al. The use of zinc dimethacrylate functionalized graphene as a reinforcement in rubber composites[J]. Polymers for Advanced Technologies, 2015, 26(5): 423-431. 
[26]Wu L M, Liao S Q, Zhang S J, et al. Enhancement of mechanical properties of natural rubber with maleic anhydride grafted liquid polybutadiene functionalized graphene oxide[J]. Chinese Journal of Polymer Science, 2015, 33(7): 1058-1068. 
[27]Li C P, Feng C F, Peng Z, et al. Ammonium-assisted green fabrication of graphene/natural rubber latex composite[J]. Polymer Composites, 2013, 34(1): 88-95. 
[28]Girase B, Shah J S, Misra R D K. Cellular mechanics of modulated osteoblasts functions in graphene oxide reinforced elastomers[J]. Advanced Engineering Materials, 2012, 14(4): B101-B111. 
[29]Wang X L, Dou W Q. Preparation of graphite oxide(GO) and the thermal stability of silicone rubber/GO nanocomposites[J]. Thermochimica Acta, 2012, 529: 25-28. 
[30]Wu S W, Tang Z H, Guo B C, et al. Effects of interfacial interaction on chain dynamics of rubber/graphene oxide hybrids: a dielectric relaxation spectroscopy study[J]. RSC Advances, 2013, 3(34): 14549-14559. 
[31]Tang Z H, Wu X H, Guo B C, et al. Preparation of butadiene-styrene-vinyl pyridine rubber-graphene oxide hybrids through co-coagulation process and in situ interface tailoring[J]. J Mater Chem, 2012, 22(15): 7492-7501. [32]Kang H L, Zuo K H, Wang Z, et al. Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance[J]. Composites Science and Technology, 2014, 92: 1-8. 
[33]Wang J Y, Jia H B, Tang Y Y, et al. Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide[J]. Journal of Materials Science, 2013, 48(4): 1571-1577. 
[34]Pradhan B, Srivastava S K. Synergistic effect of three-dimensional multi-walled carbon nanotubegraphene nanofiller in enhancing the mechanical and thermal properties of highperformance silicone rubber[J]. Polymer International, 2014, 63(7): 1219-1228. 
[35]Matos C F, Galembeck F, Zarbin A J G. Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide[J]. Carbon, 2014, 78: 469-479. 
[36]Wu L, Qu P, Zhou R, et al. Green synthesis of reduced graphene oxide and its reinforcing effect on natural rubber composites[J]. High Performance Polymers, 2015, 27(4): 486-496. 
[37]Yang G W, Liao Z F, Yang Z J, et al. Effects of substitution for carbon black with graphene oxide or graphene on the morphology and performance of natural rubber/carbon black composites[J]. Journal of Applied Polymer Science, 2015, 132(15): 41832. 
[38]He C Z, She X D, Peng Z, et al. Graphene networks and their influence on free-volume properties of grapheneepoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies[J]. Physical Chemistry Chemical Physics, 2015, 17(18): 12175-12184. 
[39]Zhan Y H, Lavorgna M, Buonocore G, et al. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing[J]. J Mater Chem, 2012, 22(21): 10464-10468. 
[40]Xing W, Wu J R, Huang G S, et al. Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content[J]. Polymer International, 2014, 63(9): 1674-1681. 
[41]Tang Z H, Zhang L Q, Feng W J, et al. Rational design of graphene surface chemistry for high-performance rubber/graphene composites[J]. Macromolecules, 2014, 47(24): 8663-8673. 
[42]Xing W, Tang M Z, Wu J R, et al. Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method[J]. Composites Science and Technology, 2014, 99: 67-74. 
[43]Ning N Y, Ma Q, Liu S T, et al. Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide[J]. ACS Applied Materials & Interfaces, 2015, 7(20): 10755-10762. 
[44]Liu X, Sun D Q, Wang L W, et al. Sodium humate functionalized graphene and its unique reinforcement effects for rubber[J]. Ind Eng Chem Res, 2013, 52(41): 14592-14600. 
[45]Kim J S, Yun J H, Kim П, et al. Electrical properties of graphene/SBR nanocomposite prepared by latex heterocoagulation process at room temperature[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(2): 325-330. 
[46]Ozbas B, O'Neill C D, Register R A, et al. Multifunctional elastomer nanocomposites with functionalized graphene single sheets[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(13): 910-916. 
[47]Dao T D, Lee H, Jeong H M. Alumina-coated graphene nanosheet and its composite of acrylic rubber[J]. Journal of Colloid and Interface Science, 2014, 416: 38-43. 
[48]Liu S T, Tian M, Yan B Y, et al. High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes[J]. Polymer, 2015, 56: 375-384. 
[49]Tian M, Zhang J, Zhang L Q, et al. Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold[J]. Journal of Colloid and Interface Science, 2014, 430: 249-256. [50]Yaragalla S, Meera A P, Kalarikkal N, et al. Chemistry associated with natural rubber-graphene nanocomposites and its effect on physical and structural properties[J]. Industrial Crops and Products, 2015, 74: 792-802. 
[51]Kumar S K, Castro M, Saiter A, et al. Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensingapplications[J]. Materials Letters, 2013, 96: 109-112. 
[52]Singh V K, Shukla A, Patra M K, et al. Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite[J]. Carbon, 2012, 50(6): 2202-2208. [53]Wu X, Lin T F, Tang Z H, et al. Natural rubber/graphene oxide composites: effect of sheet size on mechanical properties and strain-induced crystallization behavior[J]. Express Polym Lett, 2015, 9(8): 672-685. 
[54]Lin Y, Chen Y Z, Zeng Z K, et al. Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 35-44. [55]Zhang X M, Wang J Y, Jia H B, et al. Multifunctional nanocomposites between natural rubber and polyvinyl pyrrolidone modified graphene[J]. Composites Part B: Engineering, 2016, 84: 121-129. 
[56]Razak J A, Ahmad S H, Ratnam C T, et al. Effects of poly(ethyleneimine) adsorption on graphene nanoplatelets to the properties of NR/EPDM rubber blend nanocomposites[J]. Journal of Materials Science, 2015, 50(19): 6365-6381. [57]Lin Y, Zeng Z K, Zhu J R, et al. Graphene nanosheets decorated with ZnO nanoparticles: facile synthesis and promising application for enhancing the mechanical and gas barrier properties of rubber nanocomposites[J]. RSC Advances, 2015, 5(71): 57771-57780. 
[58]Wu J R, Huang G S, Li H, et al. Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content[J]. Polymer, 2013, 54(7): 1930-1937. 
[59]Liu X, Kuang W Y, Guo B C. Preparation of rubber/graphene oxide composites with in-situ interfacial design[J]. Polymer, 2015, 56: 553-562. 
[60]Zhi X, Mao Y Y, Yu Z Z, et al. γ-Aminopropyl triethoxysilane functionalized graphene oxide for composites with high dielectric constant and low dielectric loss[J]. Composites Part A: Applied Science and Manufacturing, 2015, 76: 194-202. 
[61]Zhao X W, Zang C G, Wen Y Q, et al. Thermal and mechanical properties of liquid silicone rubber composites filled with functionalized graphene oxide[J]. Journal of Applied Polymer Science, 2015, 132(38): 42582. 
[62]Lian H Q, Li S X, Liu K L, et al. Study on modified graphene/butyl rubber nanocomposites. I. Preparation and characterization[J]. Polym Eng Sci, 2011, 51(11): 2254-2260. 
[63]Ma W S, Deng B J. Preparation and characterization of nano functionalized graphene/room temperature vulcanized silicone rubber composites [J]. Acta Materiae Compositae Sinica, 2011, 28(4): 40-45. 
[64]AlHartomy O A, AlGhamdi A A, Al-Salamy F, et al. Dielectric and microwave properties of graphene nanoplatelets/carbon black filled natural rubber composites[J]. International Journal of Materials and Chemistry, 2012, 2(3): 116-122. 
[65]Cai W T, Huang Y, Wang D Y, et al. Piezoresistive behavior of graphene nanoplatelets/carbon black/silicone rubber nanocomposite[J]. Journal of Applied Polymer Science, 2014, 131(3): 39778. 
[66]Varghese T V, Kumar H A, Anitha S, et al. Reinforcement of acrylonitrile butadiene rubber using pristine few layer graphene and its hybrid fillers[J]. Carbon, 2013, 61: 476-486. 
[67]Zhang H M, Wang C W, Zhang Y. Preparation and properties of styrene-butadiene rubber nanocomposites blended with carbon blackgraphene hybrid filler[J]. Journal of Applied Polymer Science, 2015, 132(3): 41309. 
[68]Kumar V, Hanel T, Giannini L, et al. Graphene reinforced synthetic isoprene rubber nanocomposites[J]. Kautschuk Gummi Kunststoffe, 2014, 67(10): 38-46. 
[69]Mao Y Y, Wen S P, Chen Y L, et al. High performance graphene oxide based rubber composites[J]. Scientific Reports, 2013, 3: 2508. 
[70]Hu H Q, Zhao L, Liu J Q, et al. Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene[J]. Polymer, 2012, 53(15): 3378-3385. 
[71]Ponnamma D, Sadasivuni K K, Strankowski M, et al. Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application[J]. Soft Matter, 2013, 9(43): 10343-10353. 
[72]Yang H S, Liu P, Zhang T P, et al. Fabrication of natural rubber nanocomposites with high graphene contents via vacuum-assisted self-assembly[J]. RSC Advances, 2014, 4(53): 27687-27690. 
[73]Potts J R, Shankar O, Du L, et al. Processing-morphologyproperty relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites[J]. Macromolecules, 2012, 45(15): 6045-6055. 
[74]Malas A, Das C K. Effect of graphene oxide on the physical, mechanical and thermo-mechanical properties of neoprene and chlorosulfonated polyethylene vulcanizates[J]. Composites Part B: Engineering, 2015, 79: 639-648. 
[75]Zhan Y H, Wu J K, Xia H S, et al. Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process[J]. Macromolecular Materials and Engineering, 2011, 296(7): 590-602. 
[76]Hernández M, der Mar Bernal M, Verdejo R, et al. Overall performance of natural rubber/graphene nanocomposites[J]. Composites Science and Technology, 2012, 73: 40-46. 
[77]Wu J R, Xing W, Huang G S, et al. Vulcanization kinetics of graphene/natural rubber nanocomposites[J]. Polymer, 2013, 54(13): 3314-3323. 
[78]Liang Y R, Guo Y H, Wang E M, et al. Details of molecular organization during strain-induced crystallization in natural rubber/clay systems as revealed by real-time mechano-optical behavior[J]. Macromolecules, 2015, 48(7): 2299-2304. 
[79]Wang L, Hu L J, Gao S B, et al. Bio-inspired polydopamine-coated clay and its thermo-oxidative stabilization mechanism for styrene butadiene rubber[J]. RSC Advances, 2015, 5(12): 9314-9324. 
[80]Ning N Y, Ji L J, Zhang L Q, et al. High elasticity and conductivity of elastomer composites with arrayed carbon nanotubes as nanosprings[J]. Composites Science and Technology, 2015, 118: 78-84. 
[81]Li Y, Han B Y, Liu L, et al. Surface modification of silica by two-step method and properties of solution styrene butadiene rubber(SSBR) nanocomposites filled with modified silica[J]. Composites Science and Technology, 2013, 88: 69-75. 
[82]Li Y, Han B Y, Wen S P, et al. Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites[J]. Composites Part A: Applied Science and Manufacturing, 2014, 62: 52-59. [83]Shen J, Wen S P, Du Y S, et al. The network and properties of the NR/SBR vulcanizate modified by electron beam irradiation[J]. Radiation Physics and Chemistry, 2013, 92: 99-104. 
[84]Wu Y P, Wen S P, Shen J, et al. Improved dynamic properties of natural rubber filled with irradiation-modified carbon black[J]. Radiation Physics and Chemistry, 2015, 111: 91-97. 
[85]Zhang F Z, Chen Y L, Sun C Z, et al. Network evolutions in both pure and silica-filled natural rubbers during cyclic shear loading[J]. RSC Advances, 2014, 4(51): 26706-26713. 
[86]Nawaz K, Khan U, UlHaq N, et al. Observation of mechanical percolation in functionalized graphene oxide/elastomer composites[J]. Carbon, 2012, 50(12): 4489-4494. 
[87]Li F Y, Yan N, Zhan Y H, et al. Probing the reinforcing mechanism of graphene and graphene oxide in natural rubber[J]. Journal of Applied Polymer Science, 2013, 129(4): 2342-2351. 
[88]Ozbas B, Toki S, Hsiao B S, et al. Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(10): 718-723. 
[89]Dong B, Liu C, Zhang L Q, et al. Preparation, fracture, and fatigue of exfoliated graphene oxide/natural rubber composites[J]. RSC Advances, 2015, 5(22): 17140-17148. 
[90]Yan N, Xia H S, Zhan Y H, et al. New insights into fatigue crack growth in graphene-filled natural rubber composites by microfocus hard-X-ray beamline radiation[J]. Macromolecular Materials And Engineering, 2013, 298(1): 38-44. 
[91]Das A, Kasaliwal G R, Jurk R, et al. Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study[J]. Composites Science And Technology, 2012, 72(16): 1961-1967. 
[92]Dash B K, Achary P G R, Nayak N C. Dielectric relaxation behaviour of ethylene-vinyl acetate-exfoliated graphene nanoplatelets(xGnP) composites[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(9): 7244-7254. 
[93]Aguilar-Bolados H, Lopez-Manchado M A, Brasero J, et al. Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites[J]. Composites Part B: Engineering, in press. 
[94]Song Y Z, Yu J H, Yu L H, et al. Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets[J]. Materials & Design, 2015, 88: 950-957. 
[95]Kumar A, Modi S, Panwar A, et al. Highly impermeable nanocomposites of brominated butyl rubber with modified montmorillonite clay[J]. Rubber Chemistry and Technology, 2014, 87(4): 579-592. 
[96]Sepehri A, RazzaghiKashani M, Ghoreishy M H R. Vulcanization kinetics of butyl rubber-clay nanocomposites and its dependence on clay microstructure[J]. Journal of Applied Polymer Science, 2012, 125(S1): E204-E213. 
[97]Sadasivuni K K, Saiter A, Gautier N, et al. Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites[J]. Colloid and Polymer Science, 2013, 291(7): 1729-1740. 
[98]Song S H, Kim J M, Park K H, et al. High performance graphene embedded rubber composites[J]. RSC Advances, 2015, 5(99): 81707-81712. 
[99]Yan N, Buonocore G, Lavorgna M, et al. The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites[J]. Composites Science and Technology, 2014, 102: 74-81. 
[100]Scherillo G, Lavorgna M, Buonocore G G, et al. Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites[J]. ACS Appl Mater Interfaces, 2014, 6(4): 2230-2234. 
[101]Schopp S, Thomann R, Ratzsch K-F, et al. Functionalized graphene and carbon materials as components of styrene-butadiene rubber nanocomposites prepared by aqueous dispersion blending[J]. Macromolecular Materials and Engineering, 2014, 299(3): 319-329. 
[102]Yaragalla S, Chandran C S, Kalarikkal N, et al. Effect of reinforcement on the barrier and dielectric properties of epoxidized natural rubber-graphene nanocomposites[J]. Polymer Engineering & Science, 2015, 55(11): 2439-2447.

基金

国家“973”计划(2015CB654705);国家自然科学基金(51573007);中央高校基本科研业务费(JD1513/ZD1503);北京高等学校“青年英才计划” (YETP0493);“北京市优秀人才”计划 (2013D009016000003)
PDF(2905 KB)

2447

Accesses

0

Citation

Detail

段落导航
相关文章

/