
聚合物基复合介电材料的研究进展
Recent developments in polymer-based composite dielectric materials
具有高介电常数、低介电损耗的柔性聚合物基复合材料在电子电气行业和能源等领域有重要的应用前景。本文结合国内外近年来在这一领域的研究成果,对聚合物基高性能复合介电材料的研究进展进行了介绍。根据填料类型的不同,重点讨论了有机填料、介电陶瓷填料和导电填料对聚合物基复合材料介电性能的影响。从填料粒子的结构尺寸、几何形貌,以及填料粒子与聚合物基体之间的界面相互作用出发,探讨了影响复合材料介电性能的因素。在此基础上提出今后的研究要更加关注纳米填料的纳米效应和多组分填料之间的协同作用。
Polymer-based composites with high dielectric constant and low dielectric loss have potential applications in fabricating various electronic and energy storage devices. In this review, recent developments in this area have been summarized with 79 literature references. The effects of different types of fillers, including organic fillers, dielectric ceramic fillers and conductive fillers, on the dielectric properties are first introduced. Then, the effects of other factors—such as filler size, morphology, and the interaction between the filler and the polymer matrix—on the dielectric properties are discussed. We propose that it is worth paying attention to the nanosize effect and the synergy between different types of fillers. In future, greater efforts should be focused on the following targets: (1) the development of novel functional fillers with controlled structures, morphologies and sizes; (2) devising facile composite fabrication processes; (3) developing new technology to enhance the interfacial interaction between the filler and the matrix.
[1]Dang Z M, Wang L, Yin Y, et al. Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites [J]. Adv Mater, 2007, 19(6): 852-857.
[2]Yuan J K, Yao S H, Dang Z M, et al. Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbonnanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction [J]. J Phys Chem C, 2011, 115(13): 5515-5521.
[3]Li J J, Claude J, Norena-Franco L E, et al. Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles [J]. Chem Mater, 2008, 20(20): 6304-6306.
[4]Nan C W. Physics of inhomogeneous inorganic materials [J]. Prog Mater Sci, 1993, 37(1): 1-116.
[5]熊传溪, 李蕊, 董丽杰,等. 电容器用柔性聚合物介电材料及制备: 中国, 200910061156. X[P]. 2012-02-08.
Xiong C X, Li R, Dong L J, et al. Fabrication and flexible polymer dielectric materials for capacitor: CN 200910061156. X[P]. 2012-02-08. (in Chinese)
[6]Zhang Q M, Li H F, Poh M, et al. An all-organic composite actuator material with a high dielectric constant [J]. Nature, 2002, 419: 284-287.
[7]Wang J, Shen Q, Yang C, et al. High dielectric constant composite of P(VDF-TrFE) with grafted copper phthalocyanine oligmer [J]. Macromolecules, 2004, 37(6): 2294-2298.
[8]Huang C, Zhang Q M, Su J. High-dielectric-constant all-polymer percolative composites [J]. Appl Phys Lett, 2003, 82(20): 3502-3504.
[9]Lu J X, Moon K S, Kim B K, et al. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications [J]. Polymer, 2007, 48(6): 1510-1516.
[10]Jung H M, Kang J H, Yang S Y, et al. Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites [J]. Chem Mater, 2010, 22(2): 450-456.
[11]Dang Z M, Wang H Y, Zhang Y H, et al. Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3[J]. Macro Rapid Commun, 2005, 26(14): 1185-1189.
[12]Dang Z M, Wang H Y, Xu H P. Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites [J]. Appl Phys Lett, 2006, 89(11): 112902-112904.
[13]Kobayashi Y, Tanase T, Tabata T, et al. Fabrication and dielectric properties of the BaTiO3-polymer nano-composites thin films [J]. J Eur Ceram Soc, 2008, 28: 117-122.
[14]Xie S H, Zhu B K, Wei X Z, et al. Polyimide/BaTiO3 composites with controllable dielectric properties [J]. Composites A , 2005, 36(8): 1152-1157. [15]Yang X W, Zeng Y W, Cai T X, et al. Preparation of (Ba, Sr)TiO3@polystrene core-shell nanoparticles by solvent-free surface-initiated atom transfer radical polymerization [J]. Appl Surf Sci, 2012, 258(19): 7365-7371.
[16]Bai Y, Cheng Z Y, Bharti V, et al. High-dielectric-constant ceramic-powder polymer composites [J]. Appl Phys Lett, 2000, 76(25): 3804-3806.
[17]Tchoul M N, Fillery S P, Koerner H, et al. Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications [J]. Chem Mater, 2010, 22(5): 1749-1759.
[18]Yang T I, Kofinas P. Dielectric properties of polymer nanoparticle composites [J]. Polymer, 2007, 48(3): 791-798.
[19]Li J, Seok S, Chu B, et al. Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density[J]. Adv Mater, 2009, 21(2): 217-221.
[20]Dang Z M, Yuan J K, Zha J W, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites [J]. Prog Mater Sci, 2012, 57(4): 660-723.
[21]Rao Y, Ogitani S, Kohl P, et al. Novel polymer-ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application [J]. J Appl Poly Sci, 2002, 83(5): 1084-1089.
[22]Masingboon C, Thongbai P, Maensiri S, et al. Synthesis and giant dielectric behavior of CaCu3Ti4O12 ceramics prepared by polymerized complex method [J]. Mater Chem Phys, 2008, 109(2/3): 262-270.
[23]Dang Z M, Wang L, Wang H Y, et al. Rescaled temperature dependence of dielectric behavior of ferroelectric polymer composites [J]. Appl Phys Lett, 2005, 86 (17): 172905-172907.
[24]Dang Z M, Nan C W. Dielectric properties of LTNO ceramics and LTNO/PVDF composites [J]. Ceram Int, 2005, 31(2): 349-351.
[25]Subramanian M A, Li D, Duan N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases [J]. J Solid State Chem, 2000, 151(2): 323-325.
[26]Subramanian M A, Sleight A W. ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy [J]. Solid State Sci, 2002, 4(3): 347-351.
[27]Arbatti M, Shan X, Cheng Z Y. Ceramic-polymer composites with high dielectric constant [J]. Adv Mater, 2007, 19(10): 1369-1372.
[28]Shan X B, Zhang L, Yang X Q, et al. Dielectric composites with a high and temperature-independent dielectric constant [J]. J Adv Ceram, 2012, 1(4): 310-316.
[29]Dang Z M, Zhou T, Yao S H, et al. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity [J]. Adv Mater, 2009, 21(20): 2077-2082.
[30]Prakash B S, Varma K B R. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites [J]. Comp Sci Tech, 2007, 67: 2363-2368.
[31]Dang Z M, Wu J B, Fan L Z, et al. Dielectric behavior of Li and Ti co-doped NiO/PVDF composites [J]. Chem Phys Lett, 2003, 376(3): 389-394.
[32]Song Y, Shen Y, Liu H Y, et al. Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites [J]. J Mater Chem, 2012, 22(16): 8063-8068.
[33]Song Y, Shen Y, Liu H Y, et al. Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix [J]. J Mater Chem, 2012, 22(32): 16491-16498.
[34]Zhang X H, Ma Y H, Zhao C W, et al. High dielectric constant and low dielectric loss hybrid nanocomposites fabricated with ferroelectric polymer matrix and BaTiO3 nanofibers modified with perfluoroalkylsilane [J]. Appl Surf Sci, 2014, 305(30): 531-538.
[35]Dang Z M, Peng B, Xie D, et al. High dielectric permittivity silver/polyimide composite films with excellent thermal stability [J]. Appl Phys Lett, 2008, 92(11): 112910-112912.
[36]Wang B H, Liang G Z, Jiao Y C, et al. Two-layer materials of polyethylene and a carbon nanotubes/cyanate ester composite with high dielectric constant and extremely low dielectric loss [J]. Carbon, 2013, 54: 224-233.
[37]Arjmand M, Mahmoodi M, Park S, et al. An innovative method to reduce the energy loss of conductive filler/polymer composites for charge storage applications [J]. Compos Sci Technol, 2013, 78: 24-29.
[38]Wang L, Dang Z M. Carbon nanotube composites with high dielectric constant at low percolation threshold [J]. Appl Phys Lett, 2005, 87(4): 042903.
[39]Kuilla T, Bhadra S, Yao D H, et al. Recent advances in graphene based polymer composites [J]. Prog Polym Sci, 2010, 35(11): 1350-1375.
[40]Steurer P, Wissert R, Thomann R, et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide [J]. Macro Rapid Commun, 2009, 30: 316-327.
[41]Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocomposites [J]. Macromolecules, 2010, 43(16): 6515-6530.
[42]He L X, Tjong S C. Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution [J]. Nanoscale Res Lett, 2013, 8(1): 132(1-7).
[43]Romasanta L J, Hemández M, López-Manchado M A, et al. Functionalised graphene sheets as effective high dielectric constant fillers [J]. Nanoscale Res Lett, 2011, 6(1): 508(1-6).
[44]Wang J Y, Yang S H, Huang Y L, et al. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization [J]. J Mater Chem, 2011, 21(35): 13569-13575.
[45]Wang D R, Bao Y, Zha J W, et al. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene [J]. ACS Appl Mater Interfaces, 2012, 4(11): 6273-6279.
[46]Barber P, Balasubramanian S, Anguchamy Y, et al. Polymer composite and nanocomposite dielectric materials for pulse power energy storage[J]. Materials, 2009, 2(4): 1697-1733.
[47]Dang Z M, Shen Y, Fan L Z, et al. Dielectric properties of carbon fiber filled low-density polyethylene [J]. J Appl Phys, 2003, 93(9): 5543-5545.
[48]Nan C W, Shen Y, Ma J. Physical properties of composites near percolation [J]. Annu Rev Mater Res, 2010, 40: 131-151.
[49]Dang Z M, Shen Y, Nan C W. Dielectric behavior of three-phase percolative Ni-BaTiO3/polyvinylidene fluoride composites [J]. Appl Phys Lett, 2002, 81(25): 4814-4816.
[50]DevaraJu N G, Lee B I. Dielectric behavior of three phase polyimide percolative nanocomposites [J]. J Appl Polym Sci, 2006, 99(6): 3018-3022.
[51]Li Y C, Tjong S C, Li R K Y. Dielectric properties of binary polyvinylidene fluoride/barium titanate nanocomposites and their nanographite doped hybrids [J]. Express Polym Lett, 2011, 5(6): 526-534.
[52]Wang D R, Zhou T, Zha J W, et al. Functionalized graphene-BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold [J]. J Mater Chem A, 2013, 1(20): 6162-6168.
[53]Zhang X H, Ma Y H, Zhao C W, et al. High dielectric performance composites with a novel hybrid BaTiO3/graphene as filler and poly(vinylidene fluoride) as matrix [J]. ECS J Solid State Sc, 2015, 4(5): 47-55.
[54]Deng Y, Zhang Y, Xiang Y, et al. Bi2S3-BaTiO3/PVDF three-phase composites with high dielectric permittivity[J]. J Mater Chem, 2009, 19: 2058-2061.
[55]Luo S B, Yu S H, Sun R, et al. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss [J]. ACS Appl Mater Interfaces, 2014, 6(1): 176-182.
[56]Shen Y, Lin Y, Li M, et al. High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer [J]. Adv Mater, 2007, 19(10): 1418-1422.
[57]Lewis T J. Interfaces are the dominant feature of dielectrics at the nanometric level [J]. IEEE Dielect El In, 2004, 11(5): 739-753.
[58]Lewis T J. Interfaces: Nanometric dielectrics [J]. J Phys D: Appl Phys, 2005, 38(2): 202-212.
[59]Brus L E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites [J]. J Chem Phys, 1983, 79(11): 5566-5571.
[60]Kirkpatrick S. Percolation and conduction [J]. Rev Mod Phys, 1973, 45: 574-588.
[61]Dang Z M, Xu H P, Wang H Y. Significantly enhanced lowfrequency dielectric permittivity in BaTiO3/poly(vinylidene fluoride) nanocomposites [J]. Appl Phys Lett, 2007, 90(1): 012901-012903.
[62]Sun Y, Zhang Z, Wong C P. Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites [J]. Polymer, 2005, 46(7): 2297-2305.
[63]Nisa V S, Rajesh S, Murali K P, et al. Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications [J]. Compos Sci Technol, 2008, 68(1): 106-112.
[64]Yu Y, Dang Z M, Zha J W. Micronanosize cofilled high dielectric permittivity composites [C]∥Proceedings of the 9th international conference on properties and applications of dielectric materials, Harbin, ICPADM, 2009: 769-772.
[65]Yang C, Song H S, Liu D B. Dielectric composites containing core@shell structure particles [J]. Adv Mater Res, 2011, 239/242: 3113-3118.
[66]Shen Y, Lin Y H, Nan C W. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell structured particles [J]. Adv Funct Mater, 2007, 17(14): 2405-2410.
[67]Choi H W, Heo Y W, Lee J H, et al. Effects of BaTiO3 on dielectric behavior of BaTiO3-Ni-polymethyl methacrylate composites [J]. Appl Phys Lett, 2006, 89(13): 132910-132912.
[68]Guo N, DiBenedetto S A, Tewari P, et al. Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites: experiment and theory [J]. Chem Mater, 2010, 22(4): 1567-1578.
[69]vila H A, Ramajo L A, Góes M S, et al. Dielectric behavior of epoxy/BaTiO3 composites using nanostructured ceramic fibers obtained by electrospinning [J]. ACS Appl Mater Interfaces, 2013, 5(3): 505-510.
[70]Tang H X, Zhou Z, Sodano H. Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites [J]. ACS Appl Mater Interfaces, 2014, 6(8): 5450-5455.
[71]Wang Y U, Tan D Q, Krahn J. Computational study of dielectric composites with core-shell filler particles [J]. J Appl Phys, 2011, 110(4): 044103-044108. [72]卢鹏荐, 王一龙, 孙志刚, 等. 高介电常数、低介电损耗的聚合物基复合材料 [J]. 化学进展, 2010, 22(8): 1619-1625.
Lu P J, Wang Y L, Sun Z G, et al. Polymer-based composites with high dielectric constant and low dielectric loss [J]. Prog Chem, 2010, 22(8): 1619-1625. (in Chinese)
[73]Dang Z M, You S S, Zha J W, et al. Effect of shell-layer thickness on dielectric permittivity in Ag@TiO2 core@shell nanoparticles polymer composites [J]. Phys Status Solidi A, 2010, 207(3): 739-742.
[74]Xie L Y, Huang X Y, Wu C, et al. Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer [J]. J Mater Chem, 2011, 21(16): 5897-5906.
[75]Zhou T, Zha J W, Cui R Y, et al. Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles [J]. ACS Appl Mater Interfaces, 2011, 3(7): 2184-2188. [76]Lin M F, Thakur V K, Tan E J, et al. Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite [J]. RSC Adv, 2011, 1(4): 576-578.
[77]Kim P, Doss N M, Tillotson J P, et al. High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer [J]. ACS Nano, 2009, 3(9): 2581-2592.
[78]Zhang X H, Chen H C, Ma Y H, et al. Preparation and dielectric properties of coreshell structural composites of poly(1H, 1H, 2H, 2Hperfluorooctyl methacrylate)@BaTiO3 nanoparticles [J]. Appl Surf Sci, 2013, 277: 121-127.
[79]Yang K, Huang X Y, Huang Y H, et al. Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application [J]. Chem Mater, 2013, 25(11): 2327-2338.
/
〈 |
|
〉 |