运用Ansys软件对橡胶密封圈进行瞬态动力学分析,研究橡胶材料的黏弹性对橡胶密封圈密封性能的影响。利用APDL参数化语言施加位移载荷,模拟橡胶密封结构在常温下的压缩追随性能,并在此基础上研究了橡胶O形圈的截面直径、间隙张开量、间隙张开时间、压缩率和压力对密封圈密封性能的影响。通过观察O形圈上表面的接触压力随时间的变化,探索在考虑振动工况和材料黏弹性的情况下O形密封圈的设计依据。研究结果表明,密封圈截面直径越大,其回弹时间越长,回弹量越小,压缩率、内压及密封面接触压力越大,追随间隙波动能力和密封性能越好。
Abstract
Ansys with transient dynamics analysis of a rubber sealing ring has been used to study how the viscoelasticity of rubber materials can affect the performance of the rubber sealing ring. A displacement load is applied by APDL to simulate the compression performance of the seal structure at room temperature, and to study the effect of varying the O-ring cross section diameter, the magnitude of the gap opening, the gap opening time, the compression ratio, and the pressure on the performance of the O-ring seal. The variation in the contact pressure of the O-ring surface with time was observed in order to explore the design principles of the O-ring in terms of vibration and viscoelasticity. The results show the larger the ring cross section diameter, the longer the spring back time, the smaller the spring back amount, the greater the compression ratio and the greater the internal pressure, leading to a greater sealing surface contact pressure and improved adaptability for following gap fluctuation and sealing performance.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]米勒 海因茨K, 纳乌 伯纳德S. 流体密封技术—原理与应用[M]. 程传庆, 译. 北京: 机械工业出版社, 2002: 5-6.
Mnler H K, Nau B S. Fluid sealing technology principles and applications[M]. Cheng C Q, trans. Beijing: China Machine Press, 2002: 5-6. (in Chinese)
[2]Lach C L. Effect of temperature and gap opening rate on the resiliency of candidate solid rocket booster O-ring materials[R]. Hampton, USA: NASA Langley Research Center, 1992.
[3] Lach C L. Effect of temperature and O-ring gland finish on sealing ability of Viton V747-75[R]. Hampton, USA: NASA Langley Research Center, 1993.
[4]Adolf D. Nonlinear viscoelastic response of carbon blackfilled butyl rubber and implications for O-ring aging[R]. Albuquerque, USA: Sandia National Laboratories, 1997.
[5] Giants T W. Viton B O-ring resilience study[R]. EI Segundo, USA: The Aerospace Corporation, 2001.
[6] Diany M, Aissaoui H. Finite element analysis for short term O-ring relaxation[J]. Jordan Journal of Mechanical and Industrial Engineering, 2011, 5(6): 478-482
[7] 徐同江. 基于ANSYS的O形密封圈的有限元分析[D]. 济南: 山东大学, 2012.
Xu T J. Ansys analysis of the sealing performance of O-sealing ring[D]. Jinan: Shandong University, 2012. (in Chinese)
[8] 杨春明, 谢禹钧. 基于Ansys的橡胶O形密封圈的密封性能有限元分析[J]. 弹性体, 2010, 20(3): 49-52.
Yang C M, Xie Y J. Ansys analysis of the sealing performance of rubber O-sealing ring[J]. China Elastomerics, 2010, 20(3): 49-52. (in Chinese)
[9]胡殿印, 王荣桥, 任全彬, 等. 橡胶O形圈密封结构的有限元分析[J]. 北京航空航天大学学报, 2005, 31(2): 255-260.
Hu D Y, Wang R Q, Ren Q B, et al. Finite element analysis of O-ring seal structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(2): 255-260. (in Chinese)
[10]冯敏亮, 刘罡, 汪珺, 等. 基于ANSYS的超弹性模型参数确定[J]. 合肥学院学报: 自然科学版, 2012, 22(3): 40-45.
Feng M L, Liu G. Wang J, et al. Determination of superelesticity models parameters based on ANSYS[J]. Journal of Hefei University: Natural Sciences, 2012, 22(3): 40-45. (in Chinese)
[11]Lakes R. Viscoelastic materials[M]. New York, USA: Cambridge University Press, 2009: 2-3.
[12]卫延斌, 史仪凯, 刘澎. 粘弹性材料剪切模量松弛函数的拟合研究[J]. 兵工学报, 2010, 31(10): 1409-1412.
Wei Y B, Shi Y K, Liu P. Fitting research on the relaxation function of shear modulus for viscoelastic materials[J]. Acta Armamentarii, 2010, 31(10): 1409-1412. (in Chinese)
[13]符若文, 李谷, 冯开才. 高分子物理[M]. 北京: 化学工业出版社, 2005: 224-225.
Fu R W, Li G, Feng K C. Polymer physics[M]. Beijing: Chemical Industry Press, 2005: 224-225. (in Chinese)
[14]ANSYS Inc. ANSYS Release 145 Documentation, ANSYS User’s Manuel[CP/OL]. Pittsburgh, USA: ANSYS Inc[2013-04-23]. http:∥wenku. baidu. com/view/14e6961dfc4ffe473368ab8a. html.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}