沸腾态气-液-固搅拌槽内宏观混合时间的研究

栗万博;覃懿达;高正明*

北京化工大学学报(自然科学版) ›› 2014, Vol. 41 ›› Issue (3) : 20-23.

PDF(1354 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年5月6日 星期二
Email Alert  RSS
PDF(1354 KB)
北京化工大学学报(自然科学版) ›› 2014, Vol. 41 ›› Issue (3) : 20-23.
化学与化学工程

沸腾态气-液-固搅拌槽内宏观混合时间的研究

  • 栗万博;覃懿达;高正明*
作者信息 +

The mixing time in a boiling gas-solid-liquid stirred tank

  • LI WanBo;QIN YiDa;GAO ZhengMing
Author information +
文章历史 +

摘要

在直径为0.476m的椭圆底搅拌槽内,采用电导率法研究了沸腾态气-液-固三相体系内混合时间特性。主要考察分散相(气体、颗粒)和功耗对混合时间的影响。实验结果表明:沸腾态搅拌槽内,同转速条件下,颗粒体积分数对单位质量功大小影响较小;仅转速高于480r/min范围内,表观气速增加,体系单位质量功略有下降。颗粒临界悬浮转速随颗粒体积分数的增加而增加,但不随表观气速的变化而发生变化。沸腾态气-液-固三相体系内,混合时间随表观气速或颗粒体积分数的升高而延长。

Abstract

The conductivity technique has been used to investigate the mixing time in a boiling gas-solid-liquid stirred tank with a diameter of 0.476 m. The effects of varying the superficial gas velocity and solid volume fraction on mixing time were investigated. At the same stirring speed, the mean specific energy dissipation rate remains constant with increasing of solid volume fraction, although it decreases with increasing superficial gas velocity in the high range of stirring speed (>480 r/min). The critical justsuspension impeller speed increases with the increasing solid volume fraction but remains constant with increasing superficial gas velocity. The mixing time increases with increasing solid volume fraction or superficial gas velocity.

引用本文

导出引用
栗万博;覃懿达;高正明*. 沸腾态气-液-固搅拌槽内宏观混合时间的研究[J]. 北京化工大学学报(自然科学版), 2014, 41(3): 20-23
LI WanBo;QIN YiDa;GAO ZhengMing. The mixing time in a boiling gas-solid-liquid stirred tank[J]. Journal of Beijing University of Chemical Technology, 2014, 41(3): 20-23

参考文献

[1]欧舒 J Y. 流体混合技术[M]. 王英琛, 林猛流, 施力田, 等译. 北京: 化学工业出版社, 1991: 62-100. 
Oldshuo J Y. Fluid mixing technology[M]. Wang Y C, Lin M L, Shi L T, et al trans. Beijing: Chemical Industry Press, 1991: 62-100. (in Chinese)
[2]Smith J M, Gao Z, MüllerSteinhagen H. The effect of temperature on the void fraction in gasliquid reactors[J]. Experimental Thermal and Fluid Science, 2004, 28: 473-478. 
[3]Gao Z, Smith J M, MüllerSteinhagen H. Gas dispersion in sparged and boiling reactors[J]. Trans IChemE, 2001, 79: 973-978. 
[4]Chen L, Bao Y Y, Gao Z M. Void Fraction Distribution in Coldgassed an Hotsparged Three Phase Stirred Tanks with Multiimpeller[J]. Chinese Journal of Chemical Engineering, 2009, 17(6): 887-895. 
[5]Bao Y Y, Chen L, Gao Z M, et al. Local void fraction and bubble size distribution in coldgassed and hotsparged stirred reactors[J]. Chemical Engineering Science, 2010, 65: 976-984. 
[6]丁绪淮, 周理. 液体搅拌[M]. 北京: 化学工业出版社, 1983: 134-136. 
Ding X H, Zhou L. Mixing in liquid[M]. Beijing: Chemical Industry Press, 1983: 134-136. (in Chinese)
[7]Zhao D L, Gao Z M, MüllerSteinhagen H, et al. Liquidphase mixing times in sparged and boiling agitated reactors with high gas loading[J]. Industrial & Engineering Chemistry Research, 2001, 40: 1482-1487. 
[8]Takahashi T, Tagawa A, Atsumi N, et al. Liquidphase mixing time in boiling stirred tank reactors with large crosssection impellers[J]. Chemical Engineering and Processing, 2006, 45: 303-311. 
[9]Bao Y Y, Hao Z G, Gao Z M, et al. Suspension of buoyant particles in a three phase stirred tank[J]. Chemical Engineering Science, 2005, 60: 2283-2292. 
[10] Biggs R D. Mixing Rates in Stirred Tanks[J]. AIChE Journal, 1963, 9(5): 636-640. 
[11] Bao Y Y, Yang J, Chen L, et al. Influence of the top impeller diameter on the gas dispersion in a sparged multiimpeller stirred tank[J]. Industrial & Engineering Chemistry Research, 2012, 51: 12411-12420.
PDF(1354 KB)

2041

Accesses

0

Citation

Detail

段落导航
相关文章

/