奖励收集顶点覆盖问题的一个2-近似算法

杜俊峰; 涂建华*

北京化工大学学报(自然科学版) ›› 2014, Vol. 41 ›› Issue (2) : 120-123.

PDF(1121 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年5月16日 星期五
Email Alert  RSS
PDF(1121 KB)
北京化工大学学报(自然科学版) ›› 2014, Vol. 41 ›› Issue (2) : 120-123.
管理与数理科学

奖励收集顶点覆盖问题的一个2-近似算法

  • 杜俊峰; 涂建华*
作者信息 +

A factor 2-approximation algorithm for the prize-collecting vertex cover problem

  • DU JunFeng; TU JianHua
Author information +
文章历史 +

摘要

给定图G、点赋权函数c和边惩罚费用w,对于图中任一顶点子集FV,F的权重可定义为其包含的顶点权重之和加上图G中未被其覆盖的边的费用之和。如何寻找一个权重最小的顶点子集F是近年来研究者广泛关注的问题之一。这一问题被称作奖励收集顶点覆盖问题。本文采用迭代松弛方法给出了这一问题的一个近似算法,并证明了该算法的近似度为2。

Abstract

Given a graph G with a cost function c on its vertices and a penalty function w on its edges, the cost of a subset FV is the cost of vertices in F plus the penalty of the edges not covered by F. How to find a subset FV of minimum cost, known as the prize-collecting vertex cover problem, has become a problem of widespread concern to researchers in recent years. In this paper, we give a factor 2-approximation algorithm for the prize-collecting vertex cover problem using iterative methods, and prove the correctness of our conclusion.

引用本文

导出引用
杜俊峰; 涂建华*. 奖励收集顶点覆盖问题的一个2-近似算法[J]. 北京化工大学学报(自然科学版), 2014, 41(2): 120-123
DU JunFeng; TU JianHua. A factor 2-approximation algorithm for the prize-collecting vertex cover problem[J]. Journal of Beijing University of Chemical Technology, 2014, 41(2): 120-123

参考文献

[1]Bondy J A, Murty U S R. Graph theory with applications[M]. New York: Macmillan Press Ltd, 1976. 
[2]Balas E. The prize collecting traveling salesman problem[J]. Networks, 1989, 19: 621-636. 
[3]Bienstock D, Goemans M X, Simchi-Levi D, et al. A note on the prize collecting traveling salesman problem[J]. Mathematical Programming, 1993, 59: 413-420. [4]Hochbaum D S. Solving integer programs over monotone inequalities in three variables A framework for half integrality and good approximations[J]. European Journal
of Operational Research, 2002, 140: 291-321. 
[5]Bar-Yehuda R, Flysher G, Mestre J, et al. Approximation of partial capacitated vertex cover[J]. SIAM J. on Discrete Mathematics, 2010, 24(4): 1441-1469. 
[6]Roy S. Primal dual approximation algorithms or, partially covering topics in partial covering[R/OL]. [2013-04-09].
http:∥research.microsoft.com/enus/events/indiaschooljan2011/sambuddha.pdf. 
[7]Jain K, A factor 2 approximation algorithm for the generalized Steiner Network problem[J]. Combinatorica, 2001, 21(1): 39-60. 
[8]Lau L C, Ravi R, Singh M. Iterative methods in combinatorial optimization[M]. Cambridge: Cambridge University Press, 2011.

PDF(1121 KB)

2181

Accesses

0

Citation

Detail

段落导航
相关文章

/