一种基于分数阶卡尔曼滤波器的模型预测控制器的设计与实现

纪增浩;李大字*

北京化工大学学报(自然科学版) ›› 2014, Vol. 41 ›› Issue (2) : 109-113.

PDF(1170 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月15日 星期二
Email Alert  RSS
PDF(1170 KB)
北京化工大学学报(自然科学版) ›› 2014, Vol. 41 ›› Issue (2) : 109-113.
机电工程和信息科学

一种基于分数阶卡尔曼滤波器的模型预测控制器的设计与实现

  • 纪增浩;李大字*
作者信息 +

Design and implementation of a model predictive controller based on a fractional Kalman filter

  • JI ZengHao; LI DaZi
Author information +
文章历史 +

摘要

针对一类分数阶线性系统,设计了一种基于分数阶卡尔曼滤波器的模型预测控制器。采用分数阶微分的Grunwald-Letnikov定义对被控对象的分数阶状态空间模型进行离散化,构造了一种分数阶卡尔曼滤波器,并将该滤波器得到的状态估计应用于预测控制系统的最优状态反馈控制中。将所提出的方法用于一种黏弹性阻尼系统的控制,仿真结果表明该预测控制器在设定值跟踪、抗噪声扰动等方面都有良好的控制性能;分数阶微分的短记忆长度不仅会影响分数阶卡尔曼滤波器的估计精度,还会对预测控制器的性能产生重要影响。

Abstract

In this paper, a fractional Kalman filter-based model predictive controller is studied with a fractional order linear system. By using the Grunwald-Letnikov definition of the fractional derivative, the fractional state-space model of the controlled plant is discretely approximated, and a fractional Kalman filter is designed to estimate the unpredictable states, which were then used to give to optimal state feedback control for the system. Simulation results of the control of a viscoelastic damping system show that the proposed predictive controller has good performance in set-point tracing and noise disturbance rejection. Furthermore, it is also found that the length of short memory of the fractional derivative can not only affect the fractional Kalman filter’s accuracy, but also have a significant impact on the performance of the proposed predictive controller.

引用本文

导出引用
纪增浩;李大字*. 一种基于分数阶卡尔曼滤波器的模型预测控制器的设计与实现[J]. 北京化工大学学报(自然科学版), 2014, 41(2): 109-113
JI ZengHao; LI DaZi. Design and implementation of a model predictive controller based on a fractional Kalman filter[J]. Journal of Beijing University of Chemical Technology, 2014, 41(2): 109-113

参考文献

[1]Zhang Y L, Park J H, Chong K T. Model algorithm control for path tracking of wheeled mobile robots[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(5): 705-714.
[2]Eshaghi S, Kharrati H, Badamchizadeh M A, et al. A predictive controller based on dynamic matrix control for a non-minimum phase robot manipulator[J].
International Journal of Control, Automation, and Systems, 2012, 10(3): 574-581.
[3]Ho Y K, Mjalli F S, Yeoh H K. Generalized predictive control with dual adaptation[J]. Chemical Engineering Science, 2012, 84: 479-493.
[4]Konig O, GregorAcˇGirAcˇG G, Jakubek S. Model predictive control of a DC-DC converter for battery emulation[J]. Control Engineering Practice, 2013,
21(4): 428-440.
[5]席裕庚, 李德伟, 林姝. 模型预测控制—现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236.
Xi Y G, Li D W, Lin S. Model predictive control—Status and Challenges[J]. Acta Automatica Sinica, 2013, 39(3): 222-236. (in Chinese)
[6]Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003, 11(7): 733-764.
[7]Gafiychuk V, Datsko B, Meleshko V. Mathematical modeling of time fractional reaction-diffusion systems[J]. Journal of Computational and Applied Mathematics,
2008, 220(1): 215-225.
[8]Tripathi D, Pandey S K, Das S. Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel[J]. Applied Mathematics and Computation,
2010, 215(10): 3645-3654.
[9]Calderón A J, Vinagre B M, Feliu V. Fractional order control strategies for power electronic buck converters[J]. Signal Processing, 2006, 86(10): 2803-2819.
[10]Tricaud C, Chen Y Q. An approximate method for numerically solving fractional order optimal control problems of general form[J]. Computers and Mathematics with Applications, 2010, 59(5): 1644-1655.
[11]Romero M, de Madrid P, Maoso C, et al. Fractional-order generalized predictive control: formulation and some properties[C]∥11th International
Conference on Control, Automation, Robotics and Vision, Singapore, 2010: 1495-1500.
[12]李大字, 曹娇, 关圣涛, 等. 一种分数阶预测控制器的研究与实现[J]. 控制理论与应用, 2010, 27(5): 658-662.
Li D Z,Cao J, Guan S T, et al. Research and implementation of a fractional predictive controller[J]. Control Theory and Applications, 2010, 27(5): 658-662. (in
Chinese)
[13]Sierociuk D, Dzieliński A. Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation[J]. International
Journal of Applied Mathematics and Computer Science, 2006, 16(1): 129-140.

PDF(1170 KB)

2529

Accesses

0

Citation

Detail

段落导航
相关文章

/