以二(2-辛基十二烷氧基)苯并二噻吩(ODBDT)为供体单元,分别与受体单元二噻吩苯并噻二唑(DTBT)和二氟代二噻吩苯并噻二唑(DTffBT)共聚,合成了两种具有给-受体(D-A)结构的共轭聚合物PODBDT-DTBT和PODBDT-DTffBT。利用紫外-可见吸收光谱、循环伏安法研究了聚合物的光物理与电化学性能,并通过光伏性能测试研究了氟原子对聚合物太阳能电池的影响规律。结果表明,氟原子的引入使得聚合物的光学带隙变窄,溶解性变差;基于PODBDT-DTBT或PODBDT-DTffBT与PC71BM共混制备的本体异质结太阳能电池,光电转化效率分别为3.01%和2.00%。
Abstract
Two donor-acceptor (D-A) conjugated copolymers, namely PODBDT-DTBT and PODBDT-DTffBT, have been synthesized based on a di-(2-octyldodecyloxy)benzo[1,2-b:4,5-b′]dithiophene(ODBT) donor unit and 4,7-di(thiophen-2-yl)benzo (DTBT) or 5,6-difluoro-4,7-di(thiophen-2-yl)benzo (DTffBT) acceptor units. The photophysical and electrochemical properties of the two copolymers were investigated. The effect of fluorine atoms on the photovoltaic properties of the copolymers and the corresponding bulk heterojunction (BHJ) devices were studied. The results showed that fluorine substitution reduced the solubility of the material and had an adverse effect on the film-forming performance, but lowered the bandgap of the resulting polymer. BHJ solar cells based on PODBDT-DTBT or PODBDT-DTffBT blended with PC71BM demonstrated power conversion efficiencies of 3.01% and 2.00%, respectively, under AM 1.5G illumination (100 mW/cm2).
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Zhou H X, Yang L Q, Stuart A C, et al. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency[J]. Angewandte Chemie International Edition, 2011, 50(13): 2995-2998.
[2]Price S C, Stuart A C, Yang L Q, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells[J].Journal of the American Chemical Society, 2011, 133(12): 4625-4631.[3]Chen H C, Chen Y Y, Liu C C, et al. Prominent shortcircuit currents of fluorinated quinoxaline-based copolymer solar cells with a power conversion efficiency of 8.0%[J]. Chemistry of Materials, 2012, 24(24): 4766-4772.
[4]Albrecht S, Janietz S, Schindler W, et al. Fluorinated copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells [J]. Journal of the American Chemical Society, 2012, 134(36): 14932-14944.
[5]Zhang Y, Chien S C, Chen K S, et al. Increased open circuit voltage in fluorinated benzothiadiazolebased alternating conjugated polymers[J]. Chemical Communications, 2011, 47(39): 11026-11028.
[6]Xu Y X, Chueh C C, Yip H L, et al. Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells[J]. Advanced Materials, 2012, 24(47): 6356-6361.
[7]Zhang Y, Zou J Y, Cheuh C C, et al. Significant improved performance of photovoltaic cells made from a partially fluorinated cyclopentadithionhene/benzothiadiazole conjugated polymer[J]. Macromolecules, 2012, 45(13): 5427-5435.
[8]Iyer A, Bjorgaard J, Anderson T, et al. Quinoxalinebased semiconducting polymers: effect of fluorination on the photophysical, thermal, and charge transport properties[J]. Macromolecules, 2012, 45(16): 6380-6389.
[9]Li Z, Lu J P, Tse S C, et al. Synthesis and applications of difluorobenzothiadiazole based conjugated polymers for organic photovoltaics[J]. Journal of Materials Chemistry, 2011, 21(9): 3226-3233.
[10]Schroeder B C, Huang Z G, Ashraf R S, et al. Silaindacenodithiophenebased low band gap polymers-the effect of fluorine substitution on device performances and film morphologies[J]. Advanced Functional Materials, 2012, 22(8): 1663-1670.
[11]Neophytou M, Ioannidou H A, Ioannou T A, et al. 2-(2,3,4,5, 6-Pentafluorophenyl)-1H-benzo[d]midazole, a fluorine-rich building block for the preparation of conjugated polymer donors for organic solar cell applications[J]. Polymer Chemistry, 2012, 3(8): 2236-2243.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}