针对氧热法电石生产工艺中复合床反应器预热区高温CO和原料层进行热交换的体系,建立了计及原料颗粒内热阻的移动床气固两相换热模型。重点考察了反应器预热区气固两相温度的分布,计算了不同原料粒径和不同预热区直径条件下,达到反应器换热要求所需要的换热高度,并得到了气固两相温度分布的解析解。结果表明:(1)颗粒粒径较大时(ε的值小于33),颗粒内热阻成为气固两相换热过程的控制步骤,综合考虑床层透气性和床层压降等制约条件,在可选范围之内应优先选用直径为1cm的原料;(2)移动床气固换热过程主要受控于ε、β和γ这3个无因次参量,并且主要受控于ε;(3)气固两相温度分布的解析解,能为此类颗粒移动床换热过程提供初步设计依据。
Abstract
A movingbed reactor model was set up for the heat exchange between CO and solid particles in the preheated area of a combined bed reactor for oxygenheating calcium carbide production; the model takes into consideration the resistance to heat transfer by conduction in the particles. Temperature distributions in the gas and solid phases were calculated analytically and numerically, and the heights required for heat balance between particles and gas were obtained for the preheated area and particles of different diameters. It is demonstrated that: (1) For larger particles, conduction in the particles becomes the limiting step in gas- solid heat transfer, and based on a comprehensive consideration of the bed permeability and bed pressure drop, a particle diameter of 1cm is the optimum choice for the combined bed reactor; (2) The heat exchange in movingbeds is controlled by ε, β and γ, and ε is the main factor; (3) The analytical solution of temperature distribution can be used as the basis for the design of moving-bed heat exchangers.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]刘振宇, 刘清雅, 李国栋, 等. 一种电石生产方法: 中国, 101327928A [P]. 2008-12-24.
Liu Z Y, Liu Q Y, Li G D, et al. Method for calcium carbide production: CN, 101327928A [P]. 2008-12-24. (in Chinese)
[2]刘振宇, 刘清雅, 李国栋. 一种电石生产系统: 中国, 101428799A [P]. 2011-05-11.
Liu Z Y, Liu Q Y, Li G D. One kind of calcium carbide production system: CN, 101428799A [P]. 2011-05-11. (in Chinese)〖ZK)〗
[3]李国栋. 粉状焦炭和粉状氧化钙制备碳化钙新工艺的基础研究[D]. 北京: 北京化工大学, 2011: 2-5.
Li G D. Fundamental study on a novel technology of CaC2 production from fine coke and fine CaO[D]. Beijing: Beijing University of Chemical Technology, 2011: 2-5. (in Chinese)
[4]Li G D, Liu Q Y, Liu Z Y, et al. Production of calcium carbide from fine biochars[J]. Angew Chem Int Ed, 2010, 49(45): 8480-8483.
[5]徐才福, 陈雪枫, 徐建民, 等. 氧热法反应制备电石和合成气的方法及电石反应器: 中国, 102153085A[P]. 2011-08-17.
Xu C F, Chen X F, Xu J M, et al. The method and reactor for calcium carbide and synthesis gas synthesis: CN, 102153085A[P]. 2011-08-17. (in Chinese)
[6]Nagpal S, Sarkar T K, Sen P K. Simulation of petcoke gasification in slagging moving bed reactors[J]. Fuel Processing Technology, 2005, 86: 617-640.
[7]Grieco E M, Baldi G. Predictive model for countercurrent coal gasifiers[J]. Chemical Engineering Science, 2011, 66: 5749-5761.
[8]Cooper J, Hallet W L H. A numerical model for packedbed combustion of char particles[J]. Chemical Engineering Science, 2000, 55: 4451-4460.
[9]Zahn V N, Yi C U, SeidelMorgenstern A. Analysis and demonstration of a control concept for a heat integrated simulated moving bed reactor[J]. Chemical Engineering Science, 2011, 66: 4901-4912.
[10]Lacerda A F, Lisboa M H, Barrozo M A S. Heat and mass transfer in a countercurrent moving bed dryer[J]. Applied Thermal Engineering, 2005, 25: 2641-2652.
[11]杨奇林. 数学物理方程与特殊函数[M]. 北京: 清华大学出版社, 2004: 124-128.
Yang Q L. Mathematical physics equation and special function[M]. Beijing: Tsinghua University Press, 2004: 124-128. (in Chinese)
[12]陈涛, 张国亮. 化工传递过程基础[M]. 2版. 北京: 化学工业出版社, 2002: 141-142. Chen T, Zhang G L. Chemical transfer process foundation[M]. 2nd ed. Beijing: Chemical Industry Press, 2002: 141-142. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}