一类非线性Lyness差分方程的定性分析

崔月娥;张安雨;冯学文;吴开谡*

北京化工大学学报(自然科学版) ›› 2013, Vol. 40 ›› Issue (增刊) : 95-99.

PDF(1148 KB)
欢迎访问北京化工大学学报(自然科学版),今天是 2025年7月26日 星期六
Email Alert  RSS
PDF(1148 KB)
北京化工大学学报(自然科学版) ›› 2013, Vol. 40 ›› Issue (增刊) : 95-99.
管理与数理科学

一类非线性Lyness差分方程的定性分析

  • 崔月娥;张安雨;冯学文;吴开谡*
作者信息 +

Investigation of the stability of a sort of nonlinear Lyness difference equations

  • CUI YueE;ZHANG AnYu;FENG XueWen;WU KaiSu
Author information +
文章历史 +

摘要

研究了一类非线性二阶Lyness差分方程,利用解的不变区间的技巧,证明了解的全局渐近稳定性。将证明所得结论推广到k阶Lyness差分方程上,进一步讨论了k阶Lyness差分方程解的全局渐进稳定性,并给出了两个具体的数值算例。

Abstract

The stability of solutions of a sort of non-linear second order Lyness difference equations was investigated in this paper. Using the invariant interval technique, we proved the global asymptotic stability of the solution. Then, the conclusion for the 2-order Lyness difference equation was generalized to k-order Lyness difference equation. Furthermore, we got the global asymptotic stability of the solution of k-order Lyness equation. In the end, two numerical experimentations were carried out.

引用本文

导出引用
崔月娥;张安雨;冯学文;吴开谡*. 一类非线性Lyness差分方程的定性分析[J]. 北京化工大学学报(自然科学版), 2013, 40(增刊): 95-99
CUI YueE;ZHANG AnYu;FENG XueWen;WU KaiSu. Investigation of the stability of a sort of nonlinear Lyness difference equations[J]. Journal of Beijing University of Chemical Technology, 2013, 40(增刊): 95-99

参考文献

[1]Saber E. An Introduction to Difference Equation[M]. 3rd ed. Berlin:Springer, 2005.
[2]Amleh A M, Camouzis E, Ladas G. On second order rational dDifference equations, Part Ⅰ[J]. Journal of Difference Equations and Applications, 2007,13(11): 969-1004.
[3]El Morshedy H A.The global attractivity of difference eguations of nonincreasing nonlinearities with applications[J]. Computer & Mathematics with Applications, 2003,45(4/5): 749-758.
[4]Camouzis E, Ladas G. Dynamics of third order rational difference equations with open problems and conjectures[M]. Boca Raton, US: Chapman & Hall/CRC Press, 2008.
[5]Basu S, Merino O. Global behavior of solutions to two classes of second order rational difference equations[J]. Advance in Difference Equations, 2009, doi: 10.1155/2009/128602.
[6]Brett A, Kulenovic M R S. Global asymptotic behavior of yn+1 =(pyn+yn-1)/(r+qyn+yn-1) [J]. Advances in Difference Equations, 2007, doi: 10.1155/2007/41541.
[7]Hu L X, Li W T, Stevic S. Global asymptotic stability of a second order rational difference equation[J]. Journal of Difference Equations and Applications, 2008, 14(8): 779-797.
[8]Cima A, Gasull A, Ma osa V. On 2- and 3- periodic Lyness difference equations[J]. Journal of Difference Equations and Applications, 2012, 18(5): 849-864.
[9]Darwen C, Patula W T. Properties of a certain lyness equation[J]. Journal of Mathematical Analysis and Applications, 1998, 218(2): 458-478.
[10]《Times New Roman》Kulenovic M R S, Ladas G. Dynamics of second order rational difference equations[M]. Boca Raton, US: Chapman & Hall/CRC Press, 2002.
[11]Lugo G, Palladino F J. On a second-order rational difference equation and a rational system[J]. 2012, arXiv: 1202.0861v1[math.DS].
[12]Merino O. Global attractivity of the equilibrium of a difference equation: an elementary proof assisted by computer algebra system[J]. 2008, arXiv: 0812.3398.
[13]Palladino F J. Difference inequalities, comparison tests, and some consequences[J]. Involve J Math, 2008, 1(1): 91-100.
PDF(1148 KB)

782

Accesses

0

Citation

Detail

段落导航
相关文章

/